Disconjugacy of solutions of linear differential equations
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 46-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is an expository article devoted to the disconjugacy theory for decisions of the homogeneous differential equation of $n$-th order. We give new proofs of some basic results of this theory, such as sufficient conditions for disconjugacy, some implications from disconjugacy, properties of disconjugate equations. We also give new sufficient conditions of disconjugacy for second order differential equations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
disconjugacy, conjugate points, factorization, generalized Rolle's Theorem, multi-point Vallee Poussin's boundary value problem, Green's function.
                    
                  
                
                
                @article{VUU_2009_1_a2,
     author = {V. Ya. Derr},
     title = {Disconjugacy of solutions of linear differential equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {46--89},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_1_a2/}
}
                      
                      
                    TY - JOUR AU - V. Ya. Derr TI - Disconjugacy of solutions of linear differential equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 46 EP - 89 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2009_1_a2/ LA - ru ID - VUU_2009_1_a2 ER -
V. Ya. Derr. Disconjugacy of solutions of linear differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 46-89. http://geodesic.mathdoc.fr/item/VUU_2009_1_a2/
