Impact waves propogation in nonlinear deformable shells of a complex form
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 81-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models were developed and the nonlinear boundary value problem of dynamics thinwalled shells of the arbitrary form under action shock pulse is formulated. Dependence of processes of deformation on speed loading, compressibility of a material, finite deformations and large displacements of a shell middle surface, formation and kinetic of plasticity zones of a material during action of a shock wave are considered. Parameterization of a shell surface is carried out by bi-cubic splines. For the description of nonlinear, time and speed dependents of a shell material behavior with anisotropic hardening the generalized model of microplasticity is developed on the account of viscosity of deformation, hysteresis losses and Baushinger's effect. The solution of boundary value problems on the basis of difference schemes is constructed. Results of modeling of nonlinear wave processes in a assemble shell under action of explosion also are presented.
Keywords: nonlinear deformed media, shells, impact dynamics, numerical simulation.
@article{VUU_2008_3_a9,
     author = {V. A. Petushkov and N. V. Skorokhodova},
     title = {Impact waves propogation in nonlinear deformable shells of a~complex form},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {81--93},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a9/}
}
TY  - JOUR
AU  - V. A. Petushkov
AU  - N. V. Skorokhodova
TI  - Impact waves propogation in nonlinear deformable shells of a complex form
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 81
EP  - 93
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a9/
LA  - ru
ID  - VUU_2008_3_a9
ER  - 
%0 Journal Article
%A V. A. Petushkov
%A N. V. Skorokhodova
%T Impact waves propogation in nonlinear deformable shells of a complex form
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 81-93
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a9/
%G ru
%F VUU_2008_3_a9
V. A. Petushkov; N. V. Skorokhodova. Impact waves propogation in nonlinear deformable shells of a complex form. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 81-93. http://geodesic.mathdoc.fr/item/VUU_2008_3_a9/

[1] Proceedings of the 8th intern. Conference “Shell structures theory and applications-2005” (Gdacsk-Jurata, Poland, October 4–7, 2005)

[2] Theories of Plates and Shells. Critical Review and New Applications, Lecture Notes in Applied and Computational Mechanics, 16, eds. Kienzler R., Altenbach H., Ott I., Springer, 2004, 238 pp.

[3] Khan A. S. and Wang X., Strain Measurements and Stress Analysis, Prentice-Hall, Upper Saddle River, NJ, 2001, 247 pp.

[4] Petushkov V. A., Melsitov A. N., Postanovka i metody resheniya nelineinykh zadach impulsnoi dinamiki obolochek, Dep. v VINITI No 4170-B91, IMASh ANSSSR, M., 1991, 76 pp.

[5] Petushkov V. A., “Dinamika gidrouprugikh sistem pri impulsnom vozbuzhdenii”, Dinamika konstruktsii gidroaerouprugikh sistem, Nauka, M., 2002, 162–202

[6] Ciarlet P. G., Mathematical Elasticity, v. III, Theory of Shells, North-Holland, Amsterdam, 2000, 666 pp. | MR

[7] Kratzig W. B., Jun D., “On best shell models – from classical shells, degenerated and multi-layered concepts to 3D”, Archive of Appl. Mech., 73 (2003), 1–25 | DOI

[8] Bakulin V. N., Obraztsov I. F., Potopakhin V. A., Dinamicheskie zadachi nelineinoi teorii mnogosloinykh obolochek. Deistvie intensivnykh termosilovykh nagruzok, kontsentrirovannykh potokov energii, Nauka. Fizmatlit, M., 1998, 464 pp. | Zbl

[9] Petushkov V. A., “Chislennaya realizatsiya metoda granichnykh integralnykh uravnenii primenitelno k nelineinym zadacham mekhaniki deformirovaniya i razrusheniya ob'emnykh tel”, Modelirovanie v mekhanike, Sb. nauchnykh trudov ITPM SO AN SSSR, Novosibirsk, 1989, 133–156 | Zbl

[10] Petushkov V. A., “Raschet oborudovaniya pervogo kontura AES pri dinamicheskikh (seismicheskikh) vozdeistviyakh”, Konstruktsii i metody rascheta vodo-vodyanykh energeticheskikh reaktorov, Nauka, M., 1987, 185–204

[11] Bessiling Dzh. F., “Teoriya plasticheskogo techeniya nachalno-izotropnogo materiala, kotoryi anizotropno uprochnyaetsya pri plasticheskikh deformatsiyakh”, Mekhanika: Period. sb., 2, Mir, M., 1961, 124–168 (Per. s inostr. yaz.)

[12] Novozhilov V. V., Osnovy nelineinoi teorii uprugosti, Gostekhizdat, M., L., 1948, 212 pp.

[13] Truesdell C., Noll W., The non-linear field theories of mechanics. Handbuch der Physik, Bd III/3, Springer, N.Y., 1965, 602 pp. | MR

[14] Petushkov V. A., Kaschenko S. F., “Strukturnoe modelirovanie nelineinykh protsessov deformirovaniya konstruktsii s treschinami pri tsiklicheskikh vozdeistviyakh”, Mashinovedenie AN SSSR, 1988, no. 1, 3–11

[15] Petushkov V. A., “Statisticheskie faktory v analize protsessov deformirovaniya i otsenke resursa”, Statisticheskie zakonomernosti malotsiklovogo razrusheniya, Nauka, M., 1989, 236–245

[16] Schreyer H. L., Kulak R. F., Kramer J. M., “Accurate Numerical Solutions for Elastic Plastic Models”, Trans. of the ASME, J. of Pressure Vessels Technology, 101:8 (1979), 226–234 | DOI

[17] Abrosimov N. A., Bazhenov V. G., Nelineinye zadachi dinamiki kompozitnykh konstruktsii, Izdatelstvo NNGU, Nizh. Novgorod, 2002, 204 pp.

[18] Donea J., Guiliani S., Halleux J. P., “Prediction of the nonlinear dynamic response of structural Components using finite elements”, Nucl. Engng. And Design, 37:1 (1976), 95–114 | DOI

[19] Takezono S., Tao K., Trans. of the 4th intern. confer. on structural mechanics in reactor technology. – M 7/7, 1977