Generalization of Lagrange's identity and new integrals of motion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 69-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss system of material points in Euclidean space interacting both with each other and with external field. In particular we consider systems of particles whose interacting is described by homogeneous potential of degree of homogeneity $\alpha=-2$. Such systems were first considered by Newton and – more systematically – by Jacobi). For such systems there is an extra hidden symmetry, and corresponding first integral of motion which we call Jacobi integral. This integral was given in different papers starting with Jacobi, but we present in general. Furthermore, we construct a new algebra of integrals including Jacobi integral. A series of generalizations of Lagrange's identity for systems with homogeneous potential of degree of homogeneity $\alpha=-2$ is given. New integrals of motion for these generalizations are found.
Keywords: Lagrange's identity, many-particle system, first integral, integrability, algebra of integrals.
@article{VUU_2008_3_a7,
     author = {A. A. Kilin},
     title = {Generalization of {Lagrange's} identity and new integrals of motion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {69--74},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a7/}
}
TY  - JOUR
AU  - A. A. Kilin
TI  - Generalization of Lagrange's identity and new integrals of motion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 69
EP  - 74
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a7/
LA  - ru
ID  - VUU_2008_3_a7
ER  - 
%0 Journal Article
%A A. A. Kilin
%T Generalization of Lagrange's identity and new integrals of motion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 69-74
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a7/
%G ru
%F VUU_2008_3_a7
A. A. Kilin. Generalization of Lagrange's identity and new integrals of motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 69-74. http://geodesic.mathdoc.fr/item/VUU_2008_3_a7/

[1] Albouy A., Chenciner A., “Le probleme des corps et les distances mutuelles”, Invent. Math., 131 (1998), 151–184 | DOI | MR | Zbl

[2] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Lie algebras in vortex dynamics and celestial mechanics – IV”, Regul. Chaotic Dyn., 4:1 (1999), 23–50 | DOI | MR | Zbl

[3] Borisov A. V., Mamaev I. S., “Generalized problem of two and four Newtonian centers”, Celestial Mech. Dynam. Astronom., 92:4 (2005), 371–380 | DOI | MR | Zbl

[4] Bour E., “Mémoire sur le probléme des trois corps”, J. Ecole. Imp. Polytechn., 21 (1856), 35–58

[5] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[6] Dyson F. J., “Dynamics of a Spinning Gas Cloud”, J. Math. Mech., 18:1 (1968), 91–101 | Zbl

[7] Gaffet B., “Expanding gas clouds of ellipsoidal shape: new exact solutions”, J. Fluid Mech., 325 (1996), 113–144 | DOI | MR | Zbl

[8] Jacobi C. G. J., “Problema trium corporum mutuis attractionibus cubis distantiarum inverse proportionalibus recta linea se moventium”, Gesammelte Werke, v. 4, Reimer, Berlin, 1886, 531–539

[9] Jacobi C. G. J., “Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi”, Gesammelte Werke, v. 4, Reimer, Berlin, 1886, 319–509

[10] Kozlov V. V., “Lagrange's Identity and Its Generalizations”, Regul. Chaotic Dyn., 13:2 (2008), 71–80 | MR

[11] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Advances in Math., 16 (1975), 197–220 ; Yu. Mozer, Integriruemye gamiltonovy sistemy i spektralnaya teoriya, Redaktsiya zhurnala RKhD, 1999, 36–63 | DOI | MR | Zbl

[12] Olshanetsky M. A., Perelomov A. M., “Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature”, Lett. Nuovo Cimento, 16:11 (1976), 333–339 | DOI | MR

[13] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, VINITI, M., 1985 | MR

[14] Borisov A. V., Mamaev I. S., Puassonovy struktury i algebry Li v gamiltonovoi mekhanike, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 464 pp. | MR | Zbl

[15] Borisov A. V., Mamaev I. S., Sovremennye metody teorii integriruemykh sistem, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003, 296 pp. | MR

[16] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd. dom “Udmurtskii universitet”, Izhevsk, 1995, 429 pp. | MR | Zbl

[17] Perelomov A., Integrable Systems of Classical Mechanics and Lie Algebras, Birkhäuser Verlag, Basel, 1990 | MR | Zbl | Zbl

[18] Sadetov S. T., “O regulyarnoi reduktsii $n$-mernoi zadachi tel k uravneniyam Eilera–Puankare na algebre Li”, Regul. Chaotic Dyn., 7:3 (2002), 337–350 | DOI | MR | Zbl