Keywords: multiple-scale method.
@article{VUU_2008_3_a5,
author = {S. B. Kozitskii},
title = {Amplitude equations for three-dimensional double-diffusive convection in the neighborhood of {Hopf} bifurcation points},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {46--60},
year = {2008},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a5/}
}
TY - JOUR AU - S. B. Kozitskii TI - Amplitude equations for three-dimensional double-diffusive convection in the neighborhood of Hopf bifurcation points JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 46 EP - 60 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2008_3_a5/ LA - ru ID - VUU_2008_3_a5 ER -
%0 Journal Article %A S. B. Kozitskii %T Amplitude equations for three-dimensional double-diffusive convection in the neighborhood of Hopf bifurcation points %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2008 %P 46-60 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2008_3_a5/ %G ru %F VUU_2008_3_a5
S. B. Kozitskii. Amplitude equations for three-dimensional double-diffusive convection in the neighborhood of Hopf bifurcation points. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 46-60. http://geodesic.mathdoc.fr/item/VUU_2008_3_a5/
[1] Khappert G., Terner Dzh., “Konvektsiya, obuslovlennaya dvoinoi diffuziei”, Sovremennaya gidrodinamika. Uspekhi i problemy, Mir, M., 1984, 413–453
[2] Terner Dzh., Effekty plavuchesti v zhidkostyakh, Mir, M., 1977, 431 pp.
[3] Kozitskii S. B., “Amplitudnye uravneniya dlya sistemy s termokhalinnoi konvektsiei”, PMTF, 41:2 (2000), 56–66 | MR
[4] Balmforth N. J. and J. A. Biello, “Double diffusive instability in a tall thin slot”, J. Fluid Mech., 375 (1998), 203–233 | DOI | MR | Zbl
[5] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.
[6] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 736 pp. | MR
[7] A. Sorkin, V. Sorkin, I. Leizerson, “Salt fingers in double-diffusive systems”, Physica A, 303 (2002), 13–26 | DOI
[8] Knobloch E., Moore D. R., Toomre J. and Weiss N. O., “Transitions to chaos in two-dimensional double-diffusive convection”, J. Fluid Mech., 166 (1986), 409–448 | DOI | MR | Zbl
[9] Weiss N. O., “Convection in an imposed magnetic field. Part 1. The development of nonlinear convection”, J. Fluid Mech., 108 (1981), 247–272 | DOI | Zbl
[10] Weiss N. O., “Convection in an imposed magnetic field. Part 2. The dynamical regime”, J. Fluid Mech., 108 (1981), 273–289 | DOI | Zbl
[11] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp. | MR
[12] Nayfeh A. H., Perturbation methods, John Wiley and Sons, New York, London, Sydney, Toronto, 1973 | MR | Zbl
[13] Nayfeh A. H., Introduction to perturbation techniques, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1981 | MR | Zbl
[14] Kozitskiy S. B., “Fine structure generation in double-diffusive system”, Phys. Rev. E, 72:5 (2005), 056309, 6 pp. | DOI