Partial invariant solutions of the cubic Schrödinger equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 35-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a question of integration of the over determined system of partial differential equations which correspond to the partial invariant solution (factor system $L_{3,1}$) of the cubic Schrödinger equation.
Keywords: Schrödinger equation, over determined systems.
Mots-clés : partial invariant solution
@article{VUU_2008_3_a3,
     author = {M. V. Neshchadim and A. P. Chupakhin},
     title = {Partial invariant solutions of the cubic {Schr\"odinger} equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {35--41},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a3/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. P. Chupakhin
TI  - Partial invariant solutions of the cubic Schrödinger equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 35
EP  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a3/
LA  - ru
ID  - VUU_2008_3_a3
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. P. Chupakhin
%T Partial invariant solutions of the cubic Schrödinger equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 35-41
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a3/
%G ru
%F VUU_2008_3_a3
M. V. Neshchadim; A. P. Chupakhin. Partial invariant solutions of the cubic Schrödinger equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 35-41. http://geodesic.mathdoc.fr/item/VUU_2008_3_a3/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1992, 661 pp. | MR

[2] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. N., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980, 319 pp. | MR

[3] Gagnon L., Winternitz P., “Lie symmetries of f generalised non-linear Shrodinger equation: I. The symmetry group and its subgroups”, J. Phys. A, 21 (1988), 1493–1511 | DOI | MR | Zbl

[4] Gagnon L., Winternitz P., “Lie symmetries of f generalised non-linear Shrodinger equation: I. Exact solutions”, J. Phys. A, 22 (1988), 469–497 | DOI | MR

[5] Gagnon L., Winternitz P., “Exact solutions of the cubic and quintic non-linear Shrodinger equation for a cylindrical geometry”, Phys. Rev. A, 39 (1989), 296–306 | DOI | MR

[6] Fuschich A. P., Shtelen V. M., Serov N. V., Simmetriinyi analiz i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Nauk. dumka, Kiev, 1989, 335 pp. | MR

[7] Izmailova K. K., Chupakhin A. P., “Teoretiko-gruppovye resheniya kubicheskogo uravneniya Shredingera, porozhdennye algebrami simmetrii razmernosti 3 v dvukh postoyannykh polyakh”, Nelineinaya dinamika, 3:3 (2007), 296–306

[8] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[9] Finikov S. P., Metod vneshnikh form Kartana, Gostekhizdat, M., 1948, 432 pp. | MR

[10] Pommare Zh., Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983, 400 pp. | MR | Zbl