Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Periodic boundary value problem the name of which is given in the title of this article is considered in this work. There is a countable number of plane waves which are periodic on according to time variable. The question of their stability and bifurcation has been examined. Each of them turned out to bifurcate invariant tors of $2,\,3,\,4$ dimensions, including asymptotically stable ones. Features which make them different from the analogous problem when the number of space variables equals $1$ or $2$ are also shown. In particular we have shown parameter ranges when precritic bifurcation of saddle tors is possible and revealed the cases of realization of stable regimes with sharpening the latter is illustrated by figures. All these results have been obtained analytically and are based on asymptotic methods of nonlinear dynamic.
Keywords: attractor, nonlinear boundary value problems.
Mots-clés : bifurcation
@article{VUU_2008_3_a2,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Bifurcation of autowaves of generalized cubic {Schr\"odinger} equation with three independent variables},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {23--34},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a2/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 23
EP  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a2/
LA  - ru
ID  - VUU_2008_3_a2
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 23-34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a2/
%G ru
%F VUU_2008_3_a2
A. N. Kulikov; D. A. Kulikov. Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 23-34. http://geodesic.mathdoc.fr/item/VUU_2008_3_a2/

[1] Skott E., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 431 pp.

[2] Uizem Dzh., Lineinye i nelineinye volny v prilozhenii k elektrodinamike, Mir, M., 1977, 622 pp. | MR

[3] Landa P. S., Nelineinye volny, Mir, M., 1983, 320 pp. | MR

[4] Scheuer J., Malomed B. A., “Stable and chaotic solutions of the Ginzburg–Landau equation with periodic boundary conditions”, Phisika D, 161:1–2 (2002), 102–115 | DOI | Zbl

[5] Malinetskii G. G., Potapov A. B., Podlazov A. V., Nelineinaya dinamika, Izd-vo Komkniga, M., 2006, 280 pp.

[6] Pikovskii A., Rozenblyum M., Kurtts Yu., Sinkhronizatsiya. Fundamentalnoe yavlenie, Tekhnosfera, M., 2003, 431 pp.

[7] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 287 pp.

[8] Bartuccelli M., Constantin P., Doering G. R., Gibbon J. D., Gisselfält M., “On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation”, Phisika D, 44:3 (1990), 421–444 | DOI | Zbl

[9] Kulikov A. N., “Bifurkatsiya avtokolebanii v dvukh singulyarno vozmuschennykh periodicheskikh kraevykh zadachakh”, Matematika v YarGU: Sbornik statei k 25-letiyu mat. fak-ta, Yaroslavl, 183–193 | Zbl

[10] Kulikov A. N., “K voprosu o bifurkatsii avtokolebanii dlya singulyarno vozmuschennoi kraevoi zadachi giperbolicheskogo tipa”, Izvestiya RAEN. Dif. uravn., 2001, no. 5, 74–76

[11] Kulikov D. A., “Struktura okrestnosti beguschikh voln obobschennogo kubicheskogo uravneniya Shredingera v tsilindricheskoi oblasti”, Izvestiya RAEN. Dif. uravn., 2006, no. 11, 135–137

[12] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, YarGU, Yaroslavl, 2003, 107 pp.

[13] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo Leningradskogo gos. un-ta, L., 1950, 255 pp.

[14] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Doklady RAN, 406:1 (2006), 25–29

[15] Gukenkheimer Dzh., Kholms P., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyuternykh issledovanii, M., Izhevsk, 2002, 559 pp.

[16] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 366 pp. | Zbl

[17] Kulikov A. N., Inertsionalnye mnogoobraziya nelineinykh differentsialnykh uravnenii v gilbertovom prostranstve, Preprint In-ta prikl. matem. im. M. V. Keldysha No 85, M., 1991, 22 pp.

[18] Kulikov A. N., Kulikov D. A., “Vliyanie razmernosti prostranstva na kharakter bifurkatsii tsiklov uravneniya Ginzburga–Landau”, Materialy mezhdunarodnoi konferentsii “Sinergetika v estestvennykh naukakh” (Tver, 2007), 2007, 87–91

[19] Brur Kh. V., Dyumorte F., Van Strin S., Takens F., Struktury v dinamike, In-t kompyuternykh issledovanii, M., Izhevsk, 2003, 336 pp.

[20] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 430 pp.