A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 109-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the probability function of passing in Bethe lattice model we have found the passing threshold of a simple cubic lattice in the site problem: $x_c(s.c.)=0.3116865$.
Keywords: percolation, lattice, site problem, probability of passing, a passing threshold.
@article{VUU_2008_3_a12,
     author = {S. R. Gallyamov},
     title = {A~passing threshold of a~simple cubic lattice in the site problem of {Bethe} lattice model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {109--115},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/}
}
TY  - JOUR
AU  - S. R. Gallyamov
TI  - A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 109
EP  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/
LA  - ru
ID  - VUU_2008_3_a12
ER  - 
%0 Journal Article
%A S. R. Gallyamov
%T A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 109-115
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/
%G ru
%F VUU_2008_3_a12
S. R. Gallyamov. A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 109-115. http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/

[1] Broadbent S. K., Hammersley J. M., “Percolation processes I. Crystals and mazes”, Proc. Camb. Phil. Soc., 53 (1957), 629–641 | DOI | MR | Zbl

[2] Efros A. L., Fizika i geometriya besporyadka, Bibliotechka “Kvant”, 19, Nauka, Glav. Red. fiz. mat. lit., M., 1982, 176 pp. | MR

[3] Feder E., Fraktaly, Mir, M., 1991 | MR

[4] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike: v 2-kh chastyakh, Chast 2, Mir, M., 1990, 400 pp.

[5] Kesten Kh., Teoriya prosachivaniya dlya matematikov, Mir, M., 1986, 392 pp. | MR | Zbl

[6] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[7] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.

[8] Sykes M. F., Essam J. W., “Exact critical percolation probabilities for site and bond percolation in two dimensions”, J. Math. Phys., 5:8 (1964), 1117–1127 | DOI | MR

[9] Stauffer D., Phys. Rep., 54:1 (1979) | DOI | MR

[10] Lorenz C. D., Ziff R. M., “Universality of the excess number of clasters and the crossing probability function in three-dimensional percolation”, J. Phys. A: Math. Gen., 31 (1998), 8147–8157 | DOI | Zbl

[11] Stauffer D., Introduction to percolation theory, Tailor Francis, London, 1985 | MR