@article{VUU_2008_3_a12,
author = {S. R. Gallyamov},
title = {A~passing threshold of a~simple cubic lattice in the site problem of {Bethe} lattice model},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {109--115},
year = {2008},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/}
}
TY - JOUR AU - S. R. Gallyamov TI - A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 109 EP - 115 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/ LA - ru ID - VUU_2008_3_a12 ER -
%0 Journal Article %A S. R. Gallyamov %T A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2008 %P 109-115 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/ %G ru %F VUU_2008_3_a12
S. R. Gallyamov. A passing threshold of a simple cubic lattice in the site problem of Bethe lattice model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 109-115. http://geodesic.mathdoc.fr/item/VUU_2008_3_a12/
[1] Broadbent S. K., Hammersley J. M., “Percolation processes I. Crystals and mazes”, Proc. Camb. Phil. Soc., 53 (1957), 629–641 | DOI | MR | Zbl
[2] Efros A. L., Fizika i geometriya besporyadka, Bibliotechka “Kvant”, 19, Nauka, Glav. Red. fiz. mat. lit., M., 1982, 176 pp. | MR
[3] Feder E., Fraktaly, Mir, M., 1991 | MR
[4] Guld Kh., Tobochnik Ya., Kompyuternoe modelirovanie v fizike: v 2-kh chastyakh, Chast 2, Mir, M., 1990, 400 pp.
[5] Kesten Kh., Teoriya prosachivaniya dlya matematikov, Mir, M., 1986, 392 pp. | MR | Zbl
[6] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979
[7] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.
[8] Sykes M. F., Essam J. W., “Exact critical percolation probabilities for site and bond percolation in two dimensions”, J. Math. Phys., 5:8 (1964), 1117–1127 | DOI | MR
[9] Stauffer D., Phys. Rep., 54:1 (1979) | DOI | MR
[10] Lorenz C. D., Ziff R. M., “Universality of the excess number of clasters and the crossing probability function in three-dimensional percolation”, J. Phys. A: Math. Gen., 31 (1998), 8147–8157 | DOI | Zbl
[11] Stauffer D., Introduction to percolation theory, Tailor Francis, London, 1985 | MR