Mots-clés : bifurcation
@article{VUU_2008_3_a1,
author = {A. P. Karpova and Yu. I. Sapronov},
title = {Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {12--22},
year = {2008},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/}
}
TY - JOUR AU - A. P. Karpova AU - Yu. I. Sapronov TI - Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 12 EP - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/ LA - ru ID - VUU_2008_3_a1 ER -
%0 Journal Article %A A. P. Karpova %A Yu. I. Sapronov %T Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2008 %P 12-22 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/ %G ru %F VUU_2008_3_a1
A. P. Karpova; Yu. I. Sapronov. Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 12-22. http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/
[1] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984, 432 pp. | Zbl
[2] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp.
[3] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd. LGU, Leningrad, 1991, 144 pp.
[4] Ioss Zh., Dzhozef D., Elementarnaya teoriya ustoichivosti i bifurkatsii, Mir, M., 1983, 302 pp.
[5] Sapronov Yu. I., Smolyanov V. A., “Obobschennaya reduktsiya Kachchiopoli i bifurkatsiya reshenii uravnenii pri razrushenii nepreryvnykh simmetrii”, Matematicheskie modeli i operatornye uravneniya, Izd-vo VGU, Voronezh, 2001, 125–139
[6] Darinskii B. M., Sapronov Yu. I., “Diskriminantnye mnozhestva i rasklady bifurtsiruyuschikh reshenii fredgolmovykh uravnenii”, Sovremennaya matematika i ee prilozheniya, 7, Tbilisi, 2003, 72–86
[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp.
[8] Marsden J., “On the geometry of the Liapunov–Schmidt procedure”, Lect. Notes in Math., 755, 1979, 77–82 | Zbl
[9] Kostin D. V., “Ob odnoi skheme analiza dvukhmodovykh progibov slaboneodnorodnoi uprugoi balki”, Doklady Akademii nauk, 418:3 (2008), 295–299 | MR | Zbl
[10] Zaitsev V. F., Diskretno-gruppovoi analiz obyknovennykh differentsialnykh uravnenii, LGPI, L., 1989, 80 pp.
[11] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp.
[12] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | Zbl
[13] Trenogin V. A., Sidorov N. A., Loginov B. V., “Uravnenie razvetvleniya: potentsialnost, bifurkatsii, simmetriya”, DAN SSSR, 309:2 (1989), 286–289
[14] Zachepa V. R., Sapronov Yu. I., Lokalnyi analiz fredgolmovykh uravnenii, VGU, Voronezh, 2002, 185 pp.
[15] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004, 672 pp.
[16] Sviridyuk G. A., Fedorov V. E., Lineinye uravneniya sobolevskogo tipa, Chelyab. gos. un-t, Chelyabinsk, 2003, 179 pp. | Zbl
[17] Strygin V. V., Severin G. Yu., “Bifurkatsiya malykh sinkhronnykh avtokolebanii dvukh dinamicheskikh sistem s blizkimi chastotami”, Vestnik VGU. Ser.: fizika, matematika, 2006, no. 2, 36–45