Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 12-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov–Schmidt method considered in the context of general theory of smooth $SO(2)-$equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B. M Darinsky, Y. I. Sapronov, and V. A. Smolyanov.
Keywords: cycle, resonance, Lyapunov–Schmidt method, circle symmetry.
Mots-clés : bifurcation
@article{VUU_2008_3_a1,
     author = {A. P. Karpova and Yu. I. Sapronov},
     title = {Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {12--22},
     year = {2008},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/}
}
TY  - JOUR
AU  - A. P. Karpova
AU  - Yu. I. Sapronov
TI  - Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 12
EP  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/
LA  - ru
ID  - VUU_2008_3_a1
ER  - 
%0 Journal Article
%A A. P. Karpova
%A Yu. I. Sapronov
%T Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 12-22
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/
%G ru
%F VUU_2008_3_a1
A. P. Karpova; Yu. I. Sapronov. Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2008), pp. 12-22. http://geodesic.mathdoc.fr/item/VUU_2008_3_a1/

[1] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984, 432 pp. | Zbl

[2] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp.

[3] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd. LGU, Leningrad, 1991, 144 pp.

[4] Ioss Zh., Dzhozef D., Elementarnaya teoriya ustoichivosti i bifurkatsii, Mir, M., 1983, 302 pp.

[5] Sapronov Yu. I., Smolyanov V. A., “Obobschennaya reduktsiya Kachchiopoli i bifurkatsiya reshenii uravnenii pri razrushenii nepreryvnykh simmetrii”, Matematicheskie modeli i operatornye uravneniya, Izd-vo VGU, Voronezh, 2001, 125–139

[6] Darinskii B. M., Sapronov Yu. I., “Diskriminantnye mnozhestva i rasklady bifurtsiruyuschikh reshenii fredgolmovykh uravnenii”, Sovremennaya matematika i ee prilozheniya, 7, Tbilisi, 2003, 72–86

[7] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp.

[8] Marsden J., “On the geometry of the Liapunov–Schmidt procedure”, Lect. Notes in Math., 755, 1979, 77–82 | Zbl

[9] Kostin D. V., “Ob odnoi skheme analiza dvukhmodovykh progibov slaboneodnorodnoi uprugoi balki”, Doklady Akademii nauk, 418:3 (2008), 295–299 | MR | Zbl

[10] Zaitsev V. F., Diskretno-gruppovoi analiz obyknovennykh differentsialnykh uravnenii, LGPI, L., 1989, 80 pp.

[11] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp.

[12] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | Zbl

[13] Trenogin V. A., Sidorov N. A., Loginov B. V., “Uravnenie razvetvleniya: potentsialnost, bifurkatsii, simmetriya”, DAN SSSR, 309:2 (1989), 286–289

[14] Zachepa V. R., Sapronov Yu. I., Lokalnyi analiz fredgolmovykh uravnenii, VGU, Voronezh, 2002, 185 pp.

[15] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004, 672 pp.

[16] Sviridyuk G. A., Fedorov V. E., Lineinye uravneniya sobolevskogo tipa, Chelyab. gos. un-t, Chelyabinsk, 2003, 179 pp. | Zbl

[17] Strygin V. V., Severin G. Yu., “Bifurkatsiya malykh sinkhronnykh avtokolebanii dvukh dinamicheskikh sistem s blizkimi chastotami”, Vestnik VGU. Ser.: fizika, matematika, 2006, no. 2, 36–45