About stability of one dimensional elements at the boundary of Winkler's ambiences
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 182-183

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of local search for variants is illustrated by the example of the problem of post buckling behavior of a longitudinal compressed shank at the border of two Winkler's ambiences. It allows the “curse of dimension” to be avoided.
@article{VUU_2008_2_a59,
     author = {E. V. Tulubenskaja},
     title = {About stability of one dimensional elements at the boundary of {Winkler's} ambiences},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {182--183},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/}
}
TY  - JOUR
AU  - E. V. Tulubenskaja
TI  - About stability of one dimensional elements at the boundary of Winkler's ambiences
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 182
EP  - 183
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/
LA  - ru
ID  - VUU_2008_2_a59
ER  - 
%0 Journal Article
%A E. V. Tulubenskaja
%T About stability of one dimensional elements at the boundary of Winkler's ambiences
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 182-183
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/
%G ru
%F VUU_2008_2_a59
E. V. Tulubenskaja. About stability of one dimensional elements at the boundary of Winkler's ambiences. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 182-183. http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/