About stability of one dimensional elements at the boundary of Winkler's ambiences
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 182-183
Voir la notice de l'article provenant de la source Math-Net.Ru
The algorithm of local search for variants is illustrated by the example of the problem of post buckling behavior of a longitudinal compressed shank at the border of two Winkler's ambiences. It allows the “curse of dimension” to be avoided.
@article{VUU_2008_2_a59,
author = {E. V. Tulubenskaja},
title = {About stability of one dimensional elements at the boundary of {Winkler's} ambiences},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {182--183},
publisher = {mathdoc},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/}
}
TY - JOUR AU - E. V. Tulubenskaja TI - About stability of one dimensional elements at the boundary of Winkler's ambiences JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 182 EP - 183 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/ LA - ru ID - VUU_2008_2_a59 ER -
%0 Journal Article %A E. V. Tulubenskaja %T About stability of one dimensional elements at the boundary of Winkler's ambiences %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2008 %P 182-183 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/ %G ru %F VUU_2008_2_a59
E. V. Tulubenskaja. About stability of one dimensional elements at the boundary of Winkler's ambiences. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 182-183. http://geodesic.mathdoc.fr/item/VUU_2008_2_a59/