Minimax risk (regret) strategy for control problems for the system under dynamic disturbances
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 132-135
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper presents an approach based on the minimax risk (regret) criterion of Savage to the solution of the control problem for the system under dynamic disturbances. For comparison of the strategies arising in the approach with the optimal feedback control (in the sense of the differential games theory) the system with simple motions is considered.
			
            
            
            
          
        
      @article{VUU_2008_2_a43,
     author = {D. A. Serkov},
     title = {Minimax risk (regret) strategy for control problems for the system under dynamic disturbances},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {132--135},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a43/}
}
                      
                      
                    TY - JOUR AU - D. A. Serkov TI - Minimax risk (regret) strategy for control problems for the system under dynamic disturbances JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 132 EP - 135 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2008_2_a43/ LA - ru ID - VUU_2008_2_a43 ER -
%0 Journal Article %A D. A. Serkov %T Minimax risk (regret) strategy for control problems for the system under dynamic disturbances %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2008 %P 132-135 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2008_2_a43/ %G ru %F VUU_2008_2_a43
D. A. Serkov. Minimax risk (regret) strategy for control problems for the system under dynamic disturbances. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 132-135. http://geodesic.mathdoc.fr/item/VUU_2008_2_a43/
