Non-stationary problem of group pursuit
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 14-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the linear non-stationary problem of disputed interaction of operated objects with participation of $n$ pursuers and of $m$ evaders with dynamic opportunities of all participants being equal. Suffcient conditions of resolvability of the global problem of evasion have been obtained.
@article{VUU_2008_2_a4,
     author = {A. S. Bannikov},
     title = {Non-stationary problem of group pursuit},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {14--16},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a4/}
}
TY  - JOUR
AU  - A. S. Bannikov
TI  - Non-stationary problem of group pursuit
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 14
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a4/
LA  - ru
ID  - VUU_2008_2_a4
ER  - 
%0 Journal Article
%A A. S. Bannikov
%T Non-stationary problem of group pursuit
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 14-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a4/
%G ru
%F VUU_2008_2_a4
A. S. Bannikov. Non-stationary problem of group pursuit. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 14-16. http://geodesic.mathdoc.fr/item/VUU_2008_2_a4/