Numerical methods of solution for heat equation with delay
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 113-116
Cet article a éte moissonné depuis la source Math-Net.Ru
Numerical methods of solution are designed for the equation of heat conductivity with effect of delay. The method of straight lines and the implicit scheme with piece- constant interpolation are considered. The theorem of convergence of the last method is presented.
@article{VUU_2008_2_a36,
author = {V. G. Pimenov},
title = {Numerical methods of solution for heat equation with delay},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {113--116},
year = {2008},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/}
}
V. G. Pimenov. Numerical methods of solution for heat equation with delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 113-116. http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/
[1] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, N.Y., 1996 | MR
[2] Tavernini L., “Finite Difference Approximations for a Class of Semilinear Volterra Evolution Problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl
[3] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, Moskva, 2004
[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999