Numerical methods of solution for heat equation with delay
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 113-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical methods of solution are designed for the equation of heat conductivity with effect of delay. The method of straight lines and the implicit scheme with piece- constant interpolation are considered. The theorem of convergence of the last method is presented.
@article{VUU_2008_2_a36,
     author = {V. G. Pimenov},
     title = {Numerical methods of solution for heat equation with delay},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {113--116},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/}
}
TY  - JOUR
AU  - V. G. Pimenov
TI  - Numerical methods of solution for heat equation with delay
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 113
EP  - 116
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/
LA  - ru
ID  - VUU_2008_2_a36
ER  - 
%0 Journal Article
%A V. G. Pimenov
%T Numerical methods of solution for heat equation with delay
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 113-116
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/
%G ru
%F VUU_2008_2_a36
V. G. Pimenov. Numerical methods of solution for heat equation with delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 113-116. http://geodesic.mathdoc.fr/item/VUU_2008_2_a36/

[1] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, N.Y., 1996 | MR

[2] Tavernini L., “Finite Difference Approximations for a Class of Semilinear Volterra Evolution Problems”, SIAM J. Numer. Anal., 14:5 (1977), 931–949 | DOI | MR | Zbl

[3] Kim A. V., Pimenov V. G., $i$-gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, Moskva, 2004

[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999