@article{VUU_2008_2_a34,
author = {V. S. Patsko and V. L. Turova},
title = {Homicidal chauffeur game and its modifications},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {105--110},
year = {2008},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a34/}
}
V. S. Patsko; V. L. Turova. Homicidal chauffeur game and its modifications. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 105-110. http://geodesic.mathdoc.fr/item/VUU_2008_2_a34/
[1] Di erential games, John Wiley, N.Y., 1965 | MR
[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl
[3] Markov A. A., “Neskolko primerov resheniya osobogo roda zadach o naibolshikh i naimenshikh velichinakh”, Soobscheniya Kharkovskogo matematicheskogo obschestva Cer. 2, 1, 1889, no. 5–6, 250–276
[4] “The homicidal chauffeur”, AIAA Journal, 12, 259–260
[5] Mikhalev D. K., Ushakov V. N., “O dvukh algoritmakh priblizhennogo postroeniya mnozhestva pozitsionnogo pogloscheniya v igrovoi zadache sblizheniya”, Avtomatika i telemekhanika, 2007, no. 11, 178–194 | MR | Zbl
[6] Aubin J.-P., “A survey of viability theory”, SIAM J. Contr. Opt., 28:4 (1990), 749–788 | DOI | MR
[7] Bardi M., Falcone M., Soravia P., “Numerical methods for pursuit-evasion games via viscosity solutions”, Stochastic and Differential Games, Annals of the Int. Soc. of Dynamic Games, 4, eds. M. Bardi, T. E. S. Raghavan, T. Parthasarathy, Birkhäuser, Boston, 1999, 105–175 | MR | Zbl
[8] Bernhard P., Larrouturou B., Etude de la barriere pour un probleme de fuite optimale dans le plan, Rapport de Recherche, INRIA, Sophia-Antipolis, 1989
[9] Breakwell J. V., Merz A. W., “Toward a complete solution of the homicidal chauffeur game”, Proc. of the 1st Int. Conf. on the Theory and Application of Differential Games (Amherst, Massachusetts), 1969, III-1–III-5
[10] Breitner M., “The genesis of differential games in light of Isaacs' contributions”, J. Opt. Theory Appl., 124:3 (2005), 523–559 | DOI | MR | Zbl
[11] Cardaliaguet P., Quincampoix M., Saint-Pierre P., Numerical methods for optimal control and differential games, Ceremade CNRS URA 749, University of Paris-Dauphine, 1995
[12] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Set-valued numerical analysis for optimal control and di erential games”, Stochastic and Differential Games: Theory and Numerical Methods, Annals of the Int. Soc. of Dynamic Games, 4, eds. M. Bardi, T. E. S. Raghavan, and T. Parthasarathy, Birkhäuser, Boston, 1999, 177–247 | MR | Zbl
[13] Dubins L. E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents”, Amer. J. Math., 79 (1957), 497–516 | DOI | MR | Zbl
[14] Isaacs R., Games of pursuit, Scientic report of the RAND Corporation, Santa Monica, 1951
[15] Robot motion planning and control, Lect. Notes in Contr. and Inform. Sci., 229, ed. Laumond J.-P., Springer, N.Y., 1998 | MR | Zbl
[16] Lewin J., Decoy in pursuit-evasion games, PhD Thesis, Stanford University, 1973
[17] Lewin J., Breakwell J. V., “The surveillance-evasion game of degree”, J. Opt. Theory Appl., 16:3–4 (1975), 339–353 | DOI | MR | Zbl
[18] Lewin J., Olsder G. J., “Conic surveillance evasion”, J. Opt. Theory Appl., 27:1 (1979), 107–125 | DOI | MR | Zbl
[19] Merz A. W., The homicidal chauffeur a differential game, PhD Thesis, Stanford University, 1971
[20] Mitchell I., Application of level set methods to control and reachability problems in continuous and hybrid systems, PhD Thesis, Stanford University, 2002 | MR
[21] Patsko V. S., Turova V. L., “Numerical study of the homicidal chauffeur differential game with the reinforced pursuer”, Game Theory and Applications, 12, Nova Science Publishers, N.Y., 2007, 123–152 | MR
[22] Patsko V. S., Turova V. L., “Level sets of the value function in differential games with the homicidal chauffeur dynamics”, Int. Game Theory Review, 3:1 (2001), 67–112 | DOI | MR | Zbl
[23] Raivio T., Ehtamo H., “On numerical solution of a class of pursuit-evasion games”, Annals of the Int. Soc. Of Dynamics Games, 5, eds. J. A. Filar, K. Mizukami and V. Gaitsgory, Birkhäuser, Boston, 2000, 177–192 | MR | Zbl
[24] Reeds J. A., Shepp L. A., “Optimal paths for a car that goes both forwards and backwards”, Pacific J. Math., 145:2 (1990), 367–393 | MR