Absorption, nonwandering, and reccurence of the attainable set of a controllable system
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 97-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conditions are studied under which the attainable set of a controllable system can be absorbed in the given set or becomes nonwandering, recurrent, ergodic.
@article{VUU_2008_2_a33,
     author = {E. A. Panasenko and L. I. Rodina and E. L. Tonkov},
     title = {Absorption, nonwandering, and reccurence of the attainable set of a~controllable system},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {97--104},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a33/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - Absorption, nonwandering, and reccurence of the attainable set of a controllable system
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 97
EP  - 104
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a33/
LA  - ru
ID  - VUU_2008_2_a33
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A L. I. Rodina
%A E. L. Tonkov
%T Absorption, nonwandering, and reccurence of the attainable set of a controllable system
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 97-104
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a33/
%G ru
%F VUU_2008_2_a33
E. A. Panasenko; L. I. Rodina; E. L. Tonkov. Absorption, nonwandering, and reccurence of the attainable set of a controllable system. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 97-104. http://geodesic.mathdoc.fr/item/VUU_2008_2_a33/

[1] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[2] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., Dinamicheskie sistemy 1, Itogi nauki i tekhniki. Ser. “Sovremennye problemy matematiki. Fundamentalnye napravleniya”, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp.

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 623 pp.

[4] Ivanov A. G., Tonkov E. L., “Pochti periodicheskie upravlyaemye protsessy”, Vestn. Tamb. un-ta, 12:4 (2007), 456–459

[5] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Trudy Matem. in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[6] Panasenko E. A., Tonkov E. L., “Funktsii Lyapunova i polozhitelno invariantnye mnozhestva differentsialnykh vklyuchenii”, Differents. uravneniya, 43:6 (2007), 859–860

[7] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp.