About some applications of foliation theory in control problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 93-96
Cet article a éte moissonné depuis la source Math-Net.Ru
The possibility of applying the foliation theory in the control theory is considered.
@article{VUU_2008_2_a32,
author = {A. Ya. Narmanov and A. S. Sharipov},
title = {About some applications of foliation theory in control problems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {93--96},
year = {2008},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a32/}
}
TY - JOUR AU - A. Ya. Narmanov AU - A. S. Sharipov TI - About some applications of foliation theory in control problems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2008 SP - 93 EP - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2008_2_a32/ LA - ru ID - VUU_2008_2_a32 ER -
A. Ya. Narmanov; A. S. Sharipov. About some applications of foliation theory in control problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 93-96. http://geodesic.mathdoc.fr/item/VUU_2008_2_a32/
[1] Sussman H. J., “Orbits of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–183 | DOI | MR
[2] Tamura I., Topologiya sloenii, Mir, M., 1979 | MR | Zbl
[3] Gauthier J., Bornard G., “An openness condition for the controllability of nonlinear systems”, SIAM J. Control Optim., 20:6 (1982), 808–814 | DOI | MR | Zbl
[4] Narmanov A. Ya., Matematicheskie trudy. Tashkent, 4:1 (2001), 94–110 | MR | Zbl
[5] Azamov A., Narmanov A. Ya., “O predelnykh mnozhestvakh orbit sistem vektornykh polei”, Differents. uravneniya, 40:2 (2004), 257–260 | MR | Zbl
[6] Rettiev N. S., “O nepreryvnosti i razryvnosti funktsii Bellmana”, Differents. uravneniya, 14:12 (1978), 2178–2184 | MR | Zbl