Stable functionals in control problems with hereditary information
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 77-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents conditions that determine the $u$-stable functionals of the history of motion in control problems of hereditary dynamical systems.
@article{VUU_2008_2_a27,
     author = {N. Yu. Lukoyanov},
     title = {Stable functionals in control problems with hereditary information},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {77--80},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a27/}
}
TY  - JOUR
AU  - N. Yu. Lukoyanov
TI  - Stable functionals in control problems with hereditary information
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 77
EP  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a27/
LA  - ru
ID  - VUU_2008_2_a27
ER  - 
%0 Journal Article
%A N. Yu. Lukoyanov
%T Stable functionals in control problems with hereditary information
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 77-80
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a27/
%G ru
%F VUU_2008_2_a27
N. Yu. Lukoyanov. Stable functionals in control problems with hereditary information. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 77-80. http://geodesic.mathdoc.fr/item/VUU_2008_2_a27/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[3] Osipov Yu. S., “Differentsialnaya igra navedeniya dlya sistem s posledeistviem”, Prikladnaya matematika i mekhanika, 35:1 (1971), 123–131 | MR | Zbl

[4] Subbotin A. I., Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective, Birkhäuser, Boston, 1995 | MR

[5] Kim A. V., $i$-gladkii analiz i funktsionalno-differentsialnye uravneniya, UrO RAN, Ekaterinburg, 1996

[6] Aubin J. P., Haddad G., “History path dependent optimal control and portfolio valuation and management”, Positivity, 6 (2002), 331–358 | DOI | MR | Zbl

[7] Lukoyanov N. Yu., “Functional Hamilton-Jacobi type equations in ci-derivatives for systems with distributed delays”, Nonlinear Funct. Anal. and Appl, 8:3 (2003), 365–397 | MR | Zbl

[8] Lukoyanov N. Yu., “Differentsialnye neravenstva dlya negladkogo funktsionala tseny v zadachakh upravleniya sistemami s posledeistviem”, Trudy IMM UrO RAN, 12, no. 2, 2006, 108–118 | MR

[9] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[10] Soner H. M., “On the Hamilton–Jacobi–Bellman equations in Banach spaces”, J. Optim. Theory and Appl, 57:3 (1988), 429–437 | DOI | MR | Zbl