One problem of the optimal control of a system with aftereffect in conditions of conflict
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 65-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper a time-optimal control problem is considered. Sufficient conditions for local optimality are obtained which are linked with necessary conditions of Pontryagin's maximum principle under assumption of total controllability of a system in variations. The problem is studied for a system described by a vector differential equation either ordinary or with aftereffect. In the case of conflict control, the optimal control problem is discussed for a criterion of the minmax-maxmin time when the system attains a given state. The model example is given and the corresponding numerical experiment is discussed.
@article{VUU_2008_2_a23,
     author = {N. N. Krasovskii and A. N. Kotel'nikova},
     title = {One problem of the optimal control of a~system with aftereffect in conditions of conflict},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {65--70},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a23/}
}
TY  - JOUR
AU  - N. N. Krasovskii
AU  - A. N. Kotel'nikova
TI  - One problem of the optimal control of a system with aftereffect in conditions of conflict
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 65
EP  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a23/
LA  - ru
ID  - VUU_2008_2_a23
ER  - 
%0 Journal Article
%A N. N. Krasovskii
%A A. N. Kotel'nikova
%T One problem of the optimal control of a system with aftereffect in conditions of conflict
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 65-70
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a23/
%G ru
%F VUU_2008_2_a23
N. N. Krasovskii; A. N. Kotel'nikova. One problem of the optimal control of a system with aftereffect in conditions of conflict. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 65-70. http://geodesic.mathdoc.fr/item/VUU_2008_2_a23/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Krasovskii N. N., “Ob odnoi zadache optimalnogo regulirovaniya nelineinykh sistem”, PMM, 23 (1959), 209–229 | MR

[3] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[5] Bliss G. A., Lektsii po variatsionnomu ischisleniyu, IL, M., 1950

[6] Kalman R. E., “Ob obschei teorii sistem upravleniya”, Tr. I Kongressa IFAK, v. 1, 1961

[7] Gamkrelidze R. V., “Teoriya optimalnykh po bystrodeistviyu protsessov v lineinykh sistemakh”, Izvestiya AN SSSR, 22 (1958), 449–474 | MR | Zbl

[8] Krasovskii N. N., “Ob odnoi zadache optimalnogo regulirovaniya”, PMM, 21 (1957), 670–677 | MR