On almost periodic sections of multivalued maps
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 34-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A number of assertions is given of Stepanov almost periodic sections of multivalued maps.
@article{VUU_2008_2_a12,
     author = {L. I. Danilov},
     title = {On almost periodic sections of multivalued maps},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {34--41},
     year = {2008},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_2_a12/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On almost periodic sections of multivalued maps
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 34
EP  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_2_a12/
LA  - ru
ID  - VUU_2008_2_a12
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On almost periodic sections of multivalued maps
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 34-41
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2008_2_a12/
%G ru
%F VUU_2008_2_a12
L. I. Danilov. On almost periodic sections of multivalued maps. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2008), pp. 34-41. http://geodesic.mathdoc.fr/item/VUU_2008_2_a12/

[1] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | MR | Zbl

[2] Danilov L. I., O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.2004, No 981-V2004, UdGU, Izhevsk, 2004, 104 pp.

[3] Danilov L. I., “O pochti periodicheskikh po Bezikovichu secheniyakh mnogoznachnykh otobrazhenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki. Izhevsk, 2008, no. 1, 97–120

[4] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR

[5] Danilov L. I., “Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii”, Izv. In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1(29), 33–48

[6] Bylov B. F., Vinograd R. E., Lin V. Ya., Lokutsievskii O. O., “O topologicheskikh prichinakh anomalnogo povedeniya nekotorykh pochti periodicheskikh sistem”, Problemy asimptoticheskoi teorii nelineinykh kolebanii, Nauk. dumka, Kiev, 1977, 54–61 | MR

[7] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izv. In-ta matem. i inform. UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl

[8] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sb., 188:10 (1997), 3–24 | MR | Zbl

[9] Danilov L. I., Ivanov A. G., “K teoreme o potochechnom maksimume v pochti periodicheskom sluchae”, Izv. vuzov. Matematika, 1994, no. 6, 50–59 | MR | Zbl

[10] Danilov L. I., “Pochti periodicheskie po Veilyu secheniya nositelei meroznachnykh funktsii”, Sib. elektr. matem. izvestiya, 3 (2006), 384–392 | MR | Zbl

[11] Danilov L. I., “O pochti periodicheskikh meroznachnykh funktsiyakh”, Matem. sb., 191:12 (2000), 27–50 | MR | Zbl

[12] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl