On Besicovitch almost periodic selections of multivalued maps
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 97-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that Besicovitch almost periodic multivalued mappings to the collection of non-empty closed sets of a complete metric space have Besicovitch almost periodic selections.
@article{VUU_2008_1_a5,
     author = {L. I. Danilov},
     title = {On {Besicovitch} almost periodic selections of multivalued maps},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {97--120},
     year = {2008},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_1_a5/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - On Besicovitch almost periodic selections of multivalued maps
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 97
EP  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_1_a5/
LA  - ru
ID  - VUU_2008_1_a5
ER  - 
%0 Journal Article
%A L. I. Danilov
%T On Besicovitch almost periodic selections of multivalued maps
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 97-120
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2008_1_a5/
%G ru
%F VUU_2008_1_a5
L. I. Danilov. On Besicovitch almost periodic selections of multivalued maps. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 97-120. http://geodesic.mathdoc.fr/item/VUU_2008_1_a5/

[1] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, LN in Nonlin. Anal., 2, eds. J. Andres, L. Górniewicz and P. Nistri, 1998, 35–50

[2] Andres J., Bersani A. M., Leśniak K., “On some almost-periodicity problems in various metrics”, Acta Appl. Math., 65:1–3 (2001), 35–57 | DOI | MR | Zbl

[3] Bylov B. F., Vinograd R. E., Lin V. Ya., Lokutsievskii O. O., “O topologicheskikh prichinakh anomalnogo povedeniya nekotorykh pochti periodicheskikh sistem”, Problemy asimptoticheskoi teorii nelineinykh kolebanii, Naukova dumka, Kiev, 1977

[4] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurnal, 32:2 (1991), 172–175 | MR | Zbl

[5] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[6] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 1993, no. 1, 16–78 | Zbl

[7] Danilov L. I., O secheniyakh mnogoznachnykh pochti periodicheskikh otobrazhenii, Dep. v VINITI 31.07.95 No 2340-V95, Novosibirsk, 39 pp.

[8] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188:10 (1997), 3–24 | MR | Zbl

[9] Danilov L. I., “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | MR | Zbl

[10] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, , 2003 math.CA/0310010 | MR

[11] Danilov L. I., O pochti periodicheskikh po Veilyu secheniyakh mnogoznachnykh otobrazhenii, Dep. v VINITI 09.06.2004 No 981-V2004, Izhevsk, 104 pp.

[12] Danilov L. I., “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl

[13] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[14] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR | Zbl

[15] Marcinkiewicz J., “Une remarque sur les espaces de M. Besicowitch”, C. R. Acad. Sc. Paris, 208 (1939), 157–159 | Zbl

[16] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vyssh. shk., M., 1982 | MR | Zbl

[17] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Matematika, 1998, no. 5, 10–18 | MR

[18] Danilov L. I., Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii, Dep. v VINITI 21.02.03 No 354-V2003, Izhevsk, 70 pp.

[19] Danilov L. I., “Ravnomernaya approksimatsiya pochti periodicheskikh po Stepanovu funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2004, no. 1(29), 33–48

[20] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Veilyu i pochti periodicheskikh po Bezikovichu funktsii”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2006, no. 1(35), 33–48