Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 61-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The absolute continuity of the spectrum of multidimensional periodic Dirac operator is proved for certain classes of discontinuous magnetic potentials.
@article{VUU_2008_1_a4,
     author = {L. I. Danilov},
     title = {Absolute continuity of the spectrum of multidimensional periodic magnetic {Dirac} operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {61--96},
     year = {2008},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_1_a4/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 61
EP  - 96
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_1_a4/
LA  - ru
ID  - VUU_2008_1_a4
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 61-96
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2008_1_a4/
%G ru
%F VUU_2008_1_a4
L. I. Danilov. Absolute continuity of the spectrum of multidimensional periodic magnetic Dirac operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 61-96. http://geodesic.mathdoc.fr/item/VUU_2008_1_a4/

[1] Danilov L. I., “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240 | MR | Zbl

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Garmonicheskii analiz. Samosopryazhennost, v. 2, Mir, M., 1978 | MR

[4] Kuchment P., Levendorskii S., “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[6] Kuchment P., Floquet theory for partial differential equations, Oper. Theory Adv. Appl., 60, Birkhaeuser Verlag, Basel, 1993 | MR | Zbl

[7] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom. VI, Dep. v VINITI 31.12.96. No 3855-V96, Izhevsk, 45 pp.

[8] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. semin. POMI, 318, 2004, 298–307 | MR | Zbl

[9] Danilov L. I., O spektre operatora Diraka s periodicheskim potentsialom, Preprint FTI UrO AN SSSR, Sverdlovsk, 1987

[10] Danilov L. I., “O spektre operatora Diraka v $\mathbb R^n$ s periodicheskim potentsialom”, Teor. i matem. fizika, 85:1 (1990), 41–53 | MR

[11] Danilov L. I., Spektr operatora Diraka s periodicheskim potentsialom. I, Dep. v VINITI 12.12.91.No 4588-V91, Izhevsk, 35 pp.

[12] Danilov L. I., “Ob otsutstvii sobstvennykh znachenii v spektre obobschennogo dvumernogo periodicheskogo operatora Diraka”, Algebra i analiz, 17:3 (2005), 47–80 | MR

[13] Danilov L. I., “Ob absolyutnoi nepreryvnosti spektra trekhmernogo periodicheskogo operatora Diraka”, Izvestiya In-ta matem. i inform. UdGU. Izhevsk, 2006, no. 1(35), 49–76

[14] Danilov L. I., “O spektre periodicheskogo operatora Diraka”, Teor. i matem. fizika, 124:1 (2000), 3–17 | MR | Zbl

[15] Danilov L. I., Ob absolyutnoi nepreryvnosti spektra periodicheskikh operatorov Shredingera i Diraka. I, Dep. v VINITI 15.06.00. No 1683-V00, Izhevsk, 76 pp.

[16] Birman M. Sh., Suslina T. A., “The periodic Dirac operator is absolutely continuous”, Integr. Equat. and Oper. Theory, 34 (1999), 377–395 | DOI | MR | Zbl

[17] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravnenii s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73:6 (1950), 1117–1120

[18] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. Analiz operatorov, v. 4, Mir, M., 1982 | MR

[19] Danilov L. I., “Otsenki rezolventy i spektr operatora Diraka s periodicheskim potentsialom”, Teor. i matem. fizika, 103:1 (1995), 3–22 | MR | Zbl

[20] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR