Two non-stationary pursuit problems of a rigidly connected evaders
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 47-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The sufficient conditions are obtained for the capture of at least one evader in two non-stationary problems of the pursuit under the condition that all evaders use the same control.
@article{VUU_2008_1_a3,
     author = {A. I. Blagodatskikh},
     title = {Two non-stationary pursuit problems of a~rigidly connected evaders},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {47--60},
     year = {2008},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_1_a3/}
}
TY  - JOUR
AU  - A. I. Blagodatskikh
TI  - Two non-stationary pursuit problems of a rigidly connected evaders
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 47
EP  - 60
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_1_a3/
LA  - ru
ID  - VUU_2008_1_a3
ER  - 
%0 Journal Article
%A A. I. Blagodatskikh
%T Two non-stationary pursuit problems of a rigidly connected evaders
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 47-60
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2008_1_a3/
%G ru
%F VUU_2008_1_a3
A. I. Blagodatskikh. Two non-stationary pursuit problems of a rigidly connected evaders. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 47-60. http://geodesic.mathdoc.fr/item/VUU_2008_1_a3/

[1] Pontryagin L. S., Izbrannye nauchnye trudy, v. 2, Nauka, M., 1988, 576 pp. | MR

[2] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, MGU, M., 1990, 192 pp.

[3] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 380 pp.

[4] Petrov N. N., “Nestatsionarnyi primer L. S. Pontryagina s fazovymi ogranicheniyami”, Problemy upravleniya i informatiki, 2000, no. 4, 18–24 | MR

[5] Vagin D. A., Petrov N. N., “Prostoe presledovanie zhestko skoordinirovannykh ubegayuschikh”, Izv. RAN. Teoriya i sistemy upravleniya, 2001, no. 5, 75–79 | MR | Zbl

[6] Blagodatskikh A. I., “O zadache gruppovogo presledovaniya v nestatsionarnom primere Pontryagina”, Vestnik Udmurtskogo universiteta. Matematika, 2007, no. 1, 17–24

[7] Blagodatskikh A. I., “Pochti periodicheskie konfliktno upravlyaemye protsessy so mnogimi uchastnikami”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 83–86 | MR

[8] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR