On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 35-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate resonances and eigenvalues of the discret two-particle Schroedinger operator with a decreasing small potential.
@article{VUU_2008_1_a2,
     author = {L. E. Baranova and Yu. P. Chuburin},
     title = {On quasi-levels of the discret two-particle {Schr\"odinger} operator with a~decreasing small potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {35--46},
     year = {2008},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2008_1_a2/}
}
TY  - JOUR
AU  - L. E. Baranova
AU  - Yu. P. Chuburin
TI  - On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2008
SP  - 35
EP  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2008_1_a2/
LA  - ru
ID  - VUU_2008_1_a2
ER  - 
%0 Journal Article
%A L. E. Baranova
%A Yu. P. Chuburin
%T On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2008
%P 35-46
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2008_1_a2/
%G ru
%F VUU_2008_1_a2
L. E. Baranova; Yu. P. Chuburin. On quasi-levels of the discret two-particle Schrödinger operator with a decreasing small potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2008), pp. 35-46. http://geodesic.mathdoc.fr/item/VUU_2008_1_a2/

[1] Lakaev S. N., “Svyazannye sostoyaniya i rezonansy $N$-chastichnogo diskretnogo operatora Shredingera”, TMF, 91 (1992), 51–65 | MR

[2] Mamatov Sh. S., Minlos R. A., “Svyazannye sostoyaniya dvukhchastichnogo klasternogo operatora”, TMF, 79 (1989), 163–179 | MR

[3] Faria da Viega A., Ioritti L., O'Carroll M., “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Physical Review E, 66 (2002), 016130, 9 pp. | DOI | MR

[4] Abdulaev Zh. I., Lakaev S. N., “Asimptotika diskretnogo spektra raznostnogo trekhchastichnogo operatora Shredingera”, TMF, 136 (2003), 231–245 | MR

[5] Abdulaev Zh. I., “Sobstvennye znacheniya dvukhchastichnogo operatora Shredingera na dvumernoi reshetke”, Uzbek. Math. J., 2005, no. 1, 3–11 | MR

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Teoriya operatorov, Mir, M., 1977 | MR

[7] Chuburin Yu. P., “O malykh vozmuscheniyakh operatora Shredingera s periodicheskim potentsialom”, TMF, 110 (1997), 443–453 | MR | Zbl

[8] Chuburin Yu. P., “On levels of a weakly pertubed periodic Schödinger operator”, Commun. Math. Phys., 249 (2004) | DOI | MR | Zbl

[9] Wolfram T., Callaway J., “Spin-wave impurity states in ferromagnets”, Physical Review, 130:6 (1963), 2207–2217 | DOI | Zbl

[10] Izyumov Yu. A., Skryabin Yu. N., Statisticheskaya mekhanika magnitouporyadochennykh sistem, Nauka, M., 1987 | MR

[11] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1977

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR