Polynomial models of the final determined automatic devices above a field $GF(2^p)$.
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2007), pp. 83-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Method of modeling the finite deterministic automaton (FDA) as a homogeneous computational structure in $GF(2^p)$ is examined. The method is based on configuration of homogeneous structure which consists of similar blocks. The idea of this configuration is based on representing functions of FDA as polynomial in $GF(2^p)$. Possibility of changing polynomial model of FDA with memory and without output is researched in case of representing it as polynomial of one variable in Galua field.
@article{VUU_2007_1_a8,
     author = {A. G. Nikolaev and Sh. R. Nurutdinov},
     title = {Polynomial models of the final determined automatic devices above a field $GF(2^p)$.},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {83--98},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2007_1_a8/}
}
TY  - JOUR
AU  - A. G. Nikolaev
AU  - Sh. R. Nurutdinov
TI  - Polynomial models of the final determined automatic devices above a field $GF(2^p)$.
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2007
SP  - 83
EP  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2007_1_a8/
LA  - ru
ID  - VUU_2007_1_a8
ER  - 
%0 Journal Article
%A A. G. Nikolaev
%A Sh. R. Nurutdinov
%T Polynomial models of the final determined automatic devices above a field $GF(2^p)$.
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2007
%P 83-98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2007_1_a8/
%G ru
%F VUU_2007_1_a8
A. G. Nikolaev; Sh. R. Nurutdinov. Polynomial models of the final determined automatic devices above a field $GF(2^p)$.. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2007), pp. 83-98. http://geodesic.mathdoc.fr/item/VUU_2007_1_a8/