Asymptotic behaviour of eigenfunctions of the Schr\"odinger operator with a non-local potential
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2007), pp. 109-120
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The asymtotic formulas for the (generalized) eigenfunctions of the Schrödinger operator with a non-local steplike potential for $x\to\pm\infty$ is found. The connection between the transmission and the reflection coefficients is established.
			
            
            
            
          
        
      @article{VUU_2007_1_a10,
     author = {N. I. Pletnikova},
     title = {Asymptotic behaviour of eigenfunctions of the {Schr\"odinger} operator with a non-local potential},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {109--120},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2007_1_a10/}
}
                      
                      
                    TY - JOUR AU - N. I. Pletnikova TI - Asymptotic behaviour of eigenfunctions of the Schr\"odinger operator with a non-local potential JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2007 SP - 109 EP - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2007_1_a10/ LA - ru ID - VUU_2007_1_a10 ER -
%0 Journal Article %A N. I. Pletnikova %T Asymptotic behaviour of eigenfunctions of the Schr\"odinger operator with a non-local potential %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2007 %P 109-120 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2007_1_a10/ %G ru %F VUU_2007_1_a10
N. I. Pletnikova. Asymptotic behaviour of eigenfunctions of the Schr\"odinger operator with a non-local potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2007), pp. 109-120. http://geodesic.mathdoc.fr/item/VUU_2007_1_a10/
