Density principle and stability of sets of periodic solutions for differential inclusion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 139-154

Voir la notice de l'article provenant de la source Math-Net.Ru

\noindent It is proven that the density principle represents the necessary and sufficient condition for stability of set of $\omega$-periodic solutions for differential inclusion with $\omega$-periodic righthand side (not necessarily convex valued) related to internal and external disturbances.
@article{VUU_2005_1_a9,
     author = {E. A. Panasenko},
     title = {Density principle and stability of sets of periodic solutions for differential inclusion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {139--154},
     publisher = {mathdoc},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - Density principle and stability of sets of periodic solutions for differential inclusion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2005
SP  - 139
EP  - 154
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/
LA  - ru
ID  - VUU_2005_1_a9
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T Density principle and stability of sets of periodic solutions for differential inclusion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2005
%P 139-154
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/
%G ru
%F VUU_2005_1_a9
E. A. Panasenko. Density principle and stability of sets of periodic solutions for differential inclusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 139-154. http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/