Density principle and stability of sets of periodic solutions for differential inclusion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 139-154
Voir la notice de l'article provenant de la source Math-Net.Ru
\noindent It is proven that the density principle represents the necessary and sufficient condition for stability of set of $\omega$-periodic solutions for differential inclusion with $\omega$-periodic righthand side (not necessarily convex valued) related to internal and external disturbances.
@article{VUU_2005_1_a9,
author = {E. A. Panasenko},
title = {Density principle and stability of sets of periodic solutions for differential inclusion},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {139--154},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/}
}
TY - JOUR AU - E. A. Panasenko TI - Density principle and stability of sets of periodic solutions for differential inclusion JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2005 SP - 139 EP - 154 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/ LA - ru ID - VUU_2005_1_a9 ER -
%0 Journal Article %A E. A. Panasenko %T Density principle and stability of sets of periodic solutions for differential inclusion %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2005 %P 139-154 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/ %G ru %F VUU_2005_1_a9
E. A. Panasenko. Density principle and stability of sets of periodic solutions for differential inclusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 139-154. http://geodesic.mathdoc.fr/item/VUU_2005_1_a9/