On eigenvalues of the $n$-dimensional discrete Schr\"odinger operator with a small decreasing potential
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 115-122
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the n-dimensional discrete Schrödinger operator with a decreasing small potential. We prove that there is eigenvalue of this operator close to each of the points $\pm 4$ — this is the boundary of the essential spectrum — when $n=2$ and potential is non-negative (or non-positive). When $n>2$ there are no eigenvalues of this operator.
@article{VUU_2005_1_a7,
author = {L. E. Morozova},
title = {On eigenvalues of the $n$-dimensional discrete {Schr\"odinger} operator with a small decreasing potential},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {115--122},
publisher = {mathdoc},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2005_1_a7/}
}
TY - JOUR AU - L. E. Morozova TI - On eigenvalues of the $n$-dimensional discrete Schr\"odinger operator with a small decreasing potential JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2005 SP - 115 EP - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2005_1_a7/ LA - ru ID - VUU_2005_1_a7 ER -
%0 Journal Article %A L. E. Morozova %T On eigenvalues of the $n$-dimensional discrete Schr\"odinger operator with a small decreasing potential %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2005 %P 115-122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2005_1_a7/ %G ru %F VUU_2005_1_a7
L. E. Morozova. On eigenvalues of the $n$-dimensional discrete Schr\"odinger operator with a small decreasing potential. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2005), pp. 115-122. http://geodesic.mathdoc.fr/item/VUU_2005_1_a7/