Mots-clés : unique data
@article{VTPMK_2024_2_a3,
author = {R. R. Gatin and S. V. Novikova},
title = {Model for uniqueness assessing degree and for restoration of weakly defined data based on {ART-2} neural network modification},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {39--59},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a3/}
}
TY - JOUR AU - R. R. Gatin AU - S. V. Novikova TI - Model for uniqueness assessing degree and for restoration of weakly defined data based on ART-2 neural network modification JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2024 SP - 39 EP - 59 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a3/ LA - ru ID - VTPMK_2024_2_a3 ER -
%0 Journal Article %A R. R. Gatin %A S. V. Novikova %T Model for uniqueness assessing degree and for restoration of weakly defined data based on ART-2 neural network modification %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2024 %P 39-59 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a3/ %G ru %F VTPMK_2024_2_a3
R. R. Gatin; S. V. Novikova. Model for uniqueness assessing degree and for restoration of weakly defined data based on ART-2 neural network modification. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2024), pp. 39-59. http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a3/
[1] Evdokimov R. A., “Review of the reports of the Moscow International Symposia on Solar System Research in 2019 and 2020 (YUM-S3 and IM-S3). Part 2. The Moon and Mercury, Venus”, Space engineering and technology, 2022, no. 2 (37), 141 pp. (in Russian)
[2] Kravchuk Zh. P., Rumyantseva O. A., “Orphan diseases: definition, problems, prospects”, Health and environmental issues, 2013, no. 4 (38), 7–11 (in Russian)
[3] Magalhaes J. P., Wang J., The fog of genetics: what is known, unknown and unknowable in the genetics of complex traits and diseases, EMBO rep (2019) 20: e48054, 2019 | DOI
[4] Su H., Zhu X., Gong S., Deep Learning Logo Detection with Data Expansion by Synthesising Contex, arXiv:1612.09322
[5] Ilin V. A., Kiryushov N. P., “The method of checking the fitness models for adequacy”, Software and Systems, 2021, no. 1, 61–66 (in Russian) | DOI
[6] Carpenter G. A., Grossberg S., “Adaptive Resonance Theory”, Encyclopedia of Machine Learning and Data Mining, eds. Sammut C., Webb G., Springer, Boston, MA, 1–17 | DOI
[7] Andreev A. A., Shatilova E. V., “Implementation of an artificial neural network based on adaptive resonance theory”, Russian Universities Reports. Mathematics, 2008, no. 1, 78–80 (in Russian)
[8] Bartfai G., “An Adaptive Resonance Theory-based Neural Network for Autonomous Learning via Iterative Knowledge Redescription”, 2021 International Joint Conference on Neural Networks (IJCNN) (Shenzhen, China), 2021, 1–8 | DOI
[9] Dmitrienko V. D., Povoroznyuk O. A., “New learning algorithms for single and multi-module discrete neural networks ART”, Bulletin of the National Technical University Kharkiv Polytechnic Institute. Series: Computer Science and Modeling, 2008, no. 24, 51–64 (in Russian)
[10] Georgiopoulos M., Heileman G. L., Huang J., “The N-N-N conjecture in ART1”, Neural Networks, 5:5 (1992), 745–753 | DOI
[11] Karthikeyan B., Gopal S., Venkatesh S., “ART 2 - an unsupervised neural network for PD pattern recognition and classification”, Expert Systems with Applications, 31:2 (2006), 345–350 | DOI
[12] Carpenter G. A., Grossberg S., Rosen D. B., “Fuzzy ART: an adaptive resonance algorithm for rapid, stable classification of analog patterns”, IJCNN-91-Seattle International Joint Conference on Neural Networks, 1991, 411–416 | DOI
[13] Kashirina I. L., Fedutinov K. A., “Building decision rules using the ARTMAP neural network”, Modeling, optimization and information technology, 7:3 (2019), 634 (in Russian) | DOI
[14] Bukhanov D. G., Polyakov V. M., “Adaptive Resonance Theory network with multilevel memory”, Economy. Computer science, 2018, no. 4, 709–717 (in Russian)
[15] Leonov S. Yu., “K-digit neural network art for analyzing the performance of computing devices”, Bulletin of the National Technical University Kharkiv Polytechnic Institute. Series: Computer Science and Modeling, 2013, no. 39 (1012), 115–128 (in Russian)
[16] Kokhonen T., Self-organizing maps, BINOM. Laboratoriya znanij, Moscow, 2013, 660 pp. (in Russian)
[17] Tunakova Yu., Novikova S., Shagidullin A., Valiev V., Novikova K., “Neural network assessment of metal retention in the body of adolescent children, depending on the air and water-food routes of intake”, AIP Conference Proceedings, v. 2948, 2023, 020019 | DOI