On some identities in gas dynamics
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2024), pp. 18-26
Cet article a éte moissonné depuis la source Math-Net.Ru
Three identities that govern the macroparameters of an ideal polytropic gas are proven. With their help the equivalence of two different forms of writing the non-stationary Euler system on class of continuously differentiable functions is established. It is shown that any infinitely differentiable solution of a stationary Euler system under some additional conditions is also a solution of stationary Navier-Stokes system and stationary quasi-gas-dynamic system.
Keywords:
Euler system, Navier-Stokes system, quasi-gas-dynamic system
Mots-clés : exact solutions.
Mots-clés : exact solutions.
@article{VTPMK_2024_2_a1,
author = {Yu. V. Sheretov},
title = {On some identities in gas dynamics},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {18--26},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/}
}
Yu. V. Sheretov. On some identities in gas dynamics. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2024), pp. 18-26. http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/
[1] Lojtsyanskij L. G., Fluid and Gas Mechanics, Nauka Publ., Moscow, 1987, 840 pp. (in Russian)
[2] Ovsyannikov L. V., Lektsii po osnovam gazovoj dinamiki, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2003, 336 pp. (in Russian) | MR
[3] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)
[4] Sheretov Yu. V., Kinetically consistent equations of gas dynamics, Tver State University, Tver, 2023, 129 pp. (in Russian)