On some identities in gas dynamics
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2024), pp. 18-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three identities that govern the macroparameters of an ideal polytropic gas are proven. With their help the equivalence of two different forms of writing the non-stationary Euler system on class of continuously differentiable functions is established. It is shown that any infinitely differentiable solution of a stationary Euler system under some additional conditions is also a solution of stationary Navier-Stokes system and stationary quasi-gas-dynamic system.
Keywords: Euler system, Navier-Stokes system, quasi-gas-dynamic system
Mots-clés : exact solutions.
@article{VTPMK_2024_2_a1,
     author = {Yu. V. Sheretov},
     title = {On some identities in gas dynamics},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {18--26},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/}
}
TY  - JOUR
AU  - Yu. V. Sheretov
TI  - On some identities in gas dynamics
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2024
SP  - 18
EP  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/
LA  - ru
ID  - VTPMK_2024_2_a1
ER  - 
%0 Journal Article
%A Yu. V. Sheretov
%T On some identities in gas dynamics
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2024
%P 18-26
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/
%G ru
%F VTPMK_2024_2_a1
Yu. V. Sheretov. On some identities in gas dynamics. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2024), pp. 18-26. http://geodesic.mathdoc.fr/item/VTPMK_2024_2_a1/

[1] Lojtsyanskij L. G., Fluid and Gas Mechanics, Nauka Publ., Moscow, 1987, 840 pp. (in Russian)

[2] Ovsyannikov L. V., Lektsii po osnovam gazovoj dinamiki, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2003, 336 pp. (in Russian) | MR

[3] Sheretov Yu. V., Continuum Dynamics under Spatiotemporal Averaging, Regular and Chaotic Dynamics Publ., Moscow, Izhevsk, 2009, 400 pp. (in Russian)

[4] Sheretov Yu. V., Kinetically consistent equations of gas dynamics, Tver State University, Tver, 2023, 129 pp. (in Russian)