Building associative rules for a database with a target parameter
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 94-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new efficient algorithm GoalApriori is proposed, which allows you to build associative rules for a special but important case when the original relational database has a target parameter. A classic example of such databases is medical databases, where the diagnosis made by doctors acts as a target parameter. Without loss of generality, we can assume that the target parameter is a discrete type parameter with a fixed set of values. The algorithm builds associative rules, the conclusion of which is the specific value of the target parameter. Premise of rules represents a set of properties of the database input parameters. The source database is reduced to a special format in which the resulting database record is specified as a single integer, regardless of the size of the source database record. In addition to saving memory, this format allows you to fully preserve information about the parameters representing the original record. More importantly, the computationally complex operations on records required to calculate the characteristics of rules are performed in this format almost instantly by a pair of logical operations on integers. The tasks and properties of the algorithm are considered. A number of statements regarding the properties of the algorithm are proved. The concept of a generalized criterion for the quality of rules is introduced, which allows for the ranking of rules.
Mots-clés : Association rules, Apriori algorithm
Keywords: Data Mining, databases.
@article{VTPMK_2024_1_a6,
     author = {V. A. Billig},
     title = {Building associative rules for a database with a target parameter},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {94--107},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a6/}
}
TY  - JOUR
AU  - V. A. Billig
TI  - Building associative rules for a database with a target parameter
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2024
SP  - 94
EP  - 107
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a6/
LA  - ru
ID  - VTPMK_2024_1_a6
ER  - 
%0 Journal Article
%A V. A. Billig
%T Building associative rules for a database with a target parameter
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2024
%P 94-107
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a6/
%G ru
%F VTPMK_2024_1_a6
V. A. Billig. Building associative rules for a database with a target parameter. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 94-107. http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a6/

[1] Agrawal R., Srikant R., “Fast algorithms for mining association rules in large databases”, Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, 1994, 487–499

[2] Han J., Kamber M., Pei J., Data Mining. Concepts and Techniques, Elsevier, 2012, 740 pp. | MR | Zbl

[3] Christian Borglet's web pages http://www.borgelt.net/apriori.html

[4] Billig V. A., “Effective Algorithm for Constructing Associative Rules”, Software products and systems, 2017, no. 23, 196–206 (in Russian) | DOI

[5] Billig V. A., Ivanova O. V., Tsaregorodtsev N. A., “Postroenie assotsiativnykh pravil v zadache meditsinskoj diagnostiki”, Software products and systems, 2016, no. 2, 146–157 (in Russian) | DOI

[6] Ramezani R., Saraee M., Nematbakhsh M. A., “MRAR: Mining Multi–Relation Association Rules”, Journal of Computing and Security, 1:2 (2014), 133–158 | MR

[7] Shaheen M., Shahbaz M., Guergachi A., “Context Based Positive and Negative Spatio Temporal Association Rule Mining”, Knowledge–Based Systems, 2013, no. 37, 261–273 | DOI

[8] Zvyagintsev N. V., Aksenova N. V., Billig V. A., Ivanova O. V., “The use of intelligent methods in database analysis in medicine”, Modern technologies and innovations. Materials of the VII All-Russian Scientific and Practical Conference, Tver, 2023, 195–205 (in Russian)