@article{VTPMK_2024_1_a5,
author = {A. M. Chernev},
title = {On {Artinian} and {Noeterian} modules relative to a torsion theory and {ACC/DCC} on essential submodules},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {84--93},
year = {2024},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/}
}
TY - JOUR AU - A. M. Chernev TI - On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2024 SP - 84 EP - 93 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/ LA - ru ID - VTPMK_2024_1_a5 ER -
%0 Journal Article %A A. M. Chernev %T On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2024 %P 84-93 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/ %G ru %F VTPMK_2024_1_a5
A. M. Chernev. On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 84-93. http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/
[1] Albu T., Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of the Parana’s Mathematical Society, Maringa, Parana, Brasil, 2015 | MR
[2] Albu T., Iosif M., “New results on C11 and C12 lattices, with applications to Grothendieck categories and torsion theories”, Frontiers of Mathematics in China, 11 (2016), 815–828 | DOI | MR | Zbl
[3] Durgun Y., Cobankaya A., “Proper classes generated by $\tau$-closed submodules”, Analele Universitatii Ovidius Constanta - Seria Matematica, 27:3 (2019), 83–95 | DOI | MR | Zbl
[4] Albu T., “The Osofsky-Smith theorem in rings, modules, categories, and lattices”, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. Nouvelle Serie, 65(113):4 (2022), 371–387 | MR
[5] Chernev A. M., “On modules with finite Goldie dimension and relative Krull dimension”, Bulletin of the Moscow University. Series 1: Mathematics. Mechanics, 1996, no. 5, 98–101 (in Russian) | MR
[6] Chernev A. M., “The nilpotence of the primary radical in PI rings having an exact modulus with relative Krull dimension”, Fundamental and Applied Mathematics, 3:4 (1997), 1229–1237 (in Russian) | MR | Zbl
[7] Davoudian M., “Modules with chain condition on uncountably generated submodules”, Journal of Algebra and its Applications, 22:6 (2023), 2350134 | DOI | MR
[8] Chaturvedi A. K., Kumar N., “On modules with chain condition on non-small submodules”, International Electronic Journal of Algebra, 33 (2023), 109–124 | DOI | MR | Zbl
[9] Chaturvedi A. K., Prakash S., “Properties of modules and rings satisfying certain chain conditions”, Southeast Asian Bulletin of Mathematics, 47:1 (2023), 35–48 | MR | Zbl
[10] Chaturvedi A. K., Prakash S., “Some variants of ascending and descending chain conditions”, Communications in Algebra, 49:10 (2021), 4324–4333 | DOI | MR | Zbl
[11] Golan J. S., “Modules satisfying both chain conditions with respect to a torsion theory”, Proceedings of the American Mathematical Society, 52 (1975), 103–108 | DOI | MR | Zbl
[12] Kashu A. I., Radicals and torsions in modules, Stiinets Publ., Chisinau, 1983 (in Russian) | MR
[13] Golan J. S., Torsion theories, Longman Scientific and Technical, Essex; Wiley, New York, 1986 | MR | Zbl
[14] Bueso J. L., Jara P., “A Generalization of Semisimple Modules”, Methods in Ring Theory, v. 129, Reidel Publishing Company, Dordrecht, 1984, 53–65 | DOI | MR