On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 84-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper concern on the properties of Artinian and Noeterian modules relative to a torsion theory. It is shown that ACC (resp. DCC) on essential submodules equivalents that a module is Artinian (resp. Noeterian), for modules with finite Goldie dimension. It is shown that ACC (resp. DCC) on essential closed submodules equivalents factor on relative socle is Artinian (resp. Noeterian).
Keywords: torsion theory, Artinian module, Noeterian module, socle of module relative to a torsion theory.
@article{VTPMK_2024_1_a5,
     author = {A. M. Chernev},
     title = {On {Artinian} and {Noeterian} modules relative to a torsion theory and {ACC/DCC} on essential submodules},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {84--93},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/}
}
TY  - JOUR
AU  - A. M. Chernev
TI  - On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2024
SP  - 84
EP  - 93
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/
LA  - ru
ID  - VTPMK_2024_1_a5
ER  - 
%0 Journal Article
%A A. M. Chernev
%T On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2024
%P 84-93
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/
%G ru
%F VTPMK_2024_1_a5
A. M. Chernev. On Artinian and Noeterian modules relative to a torsion theory and ACC/DCC on essential submodules. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 84-93. http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a5/

[1] Albu T., Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories, Monograph Series of the Parana’s Mathematical Society, Maringa, Parana, Brasil, 2015 | MR

[2] Albu T., Iosif M., “New results on C11 and C12 lattices, with applications to Grothendieck categories and torsion theories”, Frontiers of Mathematics in China, 11 (2016), 815–828 | DOI | MR | Zbl

[3] Durgun Y., Cobankaya A., “Proper classes generated by $\tau$-closed submodules”, Analele Universitatii Ovidius Constanta - Seria Matematica, 27:3 (2019), 83–95 | DOI | MR | Zbl

[4] Albu T., “The Osofsky-Smith theorem in rings, modules, categories, and lattices”, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. Nouvelle Serie, 65(113):4 (2022), 371–387 | MR

[5] Chernev A. M., “On modules with finite Goldie dimension and relative Krull dimension”, Bulletin of the Moscow University. Series 1: Mathematics. Mechanics, 1996, no. 5, 98–101 (in Russian) | MR

[6] Chernev A. M., “The nilpotence of the primary radical in PI rings having an exact modulus with relative Krull dimension”, Fundamental and Applied Mathematics, 3:4 (1997), 1229–1237 (in Russian) | MR | Zbl

[7] Davoudian M., “Modules with chain condition on uncountably generated submodules”, Journal of Algebra and its Applications, 22:6 (2023), 2350134 | DOI | MR

[8] Chaturvedi A. K., Kumar N., “On modules with chain condition on non-small submodules”, International Electronic Journal of Algebra, 33 (2023), 109–124 | DOI | MR | Zbl

[9] Chaturvedi A. K., Prakash S., “Properties of modules and rings satisfying certain chain conditions”, Southeast Asian Bulletin of Mathematics, 47:1 (2023), 35–48 | MR | Zbl

[10] Chaturvedi A. K., Prakash S., “Some variants of ascending and descending chain conditions”, Communications in Algebra, 49:10 (2021), 4324–4333 | DOI | MR | Zbl

[11] Golan J. S., “Modules satisfying both chain conditions with respect to a torsion theory”, Proceedings of the American Mathematical Society, 52 (1975), 103–108 | DOI | MR | Zbl

[12] Kashu A. I., Radicals and torsions in modules, Stiinets Publ., Chisinau, 1983 (in Russian) | MR

[13] Golan J. S., Torsion theories, Longman Scientific and Technical, Essex; Wiley, New York, 1986 | MR | Zbl

[14] Bueso J. L., Jara P., “A Generalization of Semisimple Modules”, Methods in Ring Theory, v. 129, Reidel Publishing Company, Dordrecht, 1984, 53–65 | DOI | MR