Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the weak convergence of semimartingales taking values in Hilbert space to an arbitrary stochastically continuous process with independent increments. Sufficient conditions for the weak convergence of such semimartingales to a stochastically continuous semimartingale with independent increments are obtained.
Keywords: semimartingale, Hilbert space, weak convergence, stochastically continuous processes.
@article{VTPMK_2024_1_a0,
     author = {V. V. Lavrentyev},
     title = {Weak convergence of {Hilbert-valued} semimartingales to a stochastically continuous process with independent increments},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--16},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/}
}
TY  - JOUR
AU  - V. V. Lavrentyev
TI  - Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2024
SP  - 5
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/
LA  - ru
ID  - VTPMK_2024_1_a0
ER  - 
%0 Journal Article
%A V. V. Lavrentyev
%T Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2024
%P 5-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/
%G ru
%F VTPMK_2024_1_a0
V. V. Lavrentyev. Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 5-16. http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/