@article{VTPMK_2024_1_a0,
author = {V. V. Lavrentyev},
title = {Weak convergence of {Hilbert-valued} semimartingales to a stochastically continuous process with independent increments},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {5--16},
year = {2024},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/}
}
TY - JOUR AU - V. V. Lavrentyev TI - Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2024 SP - 5 EP - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/ LA - ru ID - VTPMK_2024_1_a0 ER -
%0 Journal Article %A V. V. Lavrentyev %T Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2024 %P 5-16 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/ %G ru %F VTPMK_2024_1_a0
V. V. Lavrentyev. Weak convergence of Hilbert-valued semimartingales to a stochastically continuous process with independent increments. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2024), pp. 5-16. http://geodesic.mathdoc.fr/item/VTPMK_2024_1_a0/
[1] Liptser R. Sh., Shiryaev A. N., “On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments”, Mathematics of the USSR-Sbornik, 44:3 (1983), 299–323 | DOI | MR | Zbl | Zbl
[2] Liptser R. Sh., Shiryaev A. N., Theory of martingales, Mathematics and its Applications (Soviet Series), v. 49, Kluwer Academic Publishers Group, Dordrecht, 1989, 792 pp. | MR | MR
[3] Prokhorov Yu. V., “Convergence of Random Processes and Limit Theorems in Probability Theory”, Theory of Probability and its Applications, v. 1, Torus Press, Moscow, 1956, 157–214 | DOI | MR
[4] Lavrentyev V. V., Nazarov L. V., “A functional central limit theorem for Hilbert-valued martingales”, Lobachevskii Journal of Mathematics, 37 (2016), 138–145 | DOI | MR | Zbl
[5] Lavrentyev V. V., Nazarov L. V., “Weak convergence to Gaussian martingale of semimartingales with values in Hilbert space”, Herald of Tver State University. Series: Applied Mathematics, 2015, no. 3, 45–57 (in Russian)
[6] Lavrentyev V. V., “On the structure of Hilbert-valued martingales”, Herald of Tver State University. Series: Applied Mathematics, 2010, no. 2, 13–19 (in Russian)
[7] Lavrentyev V. V., “Canonical representation of Hilbert-valued semi-martingales”, Herald of Tver State University. Series: Applied Mathematics, 2011, no. 1, 123–130 (in Russian)
[8] Meyer P. A., “Notes sur les integrales stochastiques. I Integrales Hilbertiennes”, Lecture Notes in Mathematics, 581 (1977), 446–462 | DOI | MR | Zbl
[9] Lavrentyev V. V., Bugrimov A. L., “Compactness conditions for a family of measures of Hilbert-valued continuous semi-martingales”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 39–51 (in Russian)
[10] Jacod J., Mémin J., “Sur la convergence des semimartingales vers un processus à accroissements indépendants”, Lecture Notes in Mathematics, 784 (1980), 227–248 | DOI | MR | Zbl
[11] Billingsli P., Convergence of probability measures, Nauka Publ., Moscow, 1977, 352 pp. (in Russian) | MR
[12] Varadhan S. R. S., “Limit theorems for sums of independent random variables with values in a Hilbert space”, Sankhyā: The Indian Journal of Statistics, Series A, 24:3 (1962), 213–238 | MR | Zbl
[13] Jajte R., “On convergence of infinitely divisiable distributions in a Hilbert space”, Colloquium Mathematicum, 19:2 (1968), 327–332 | DOI | MR | Zbl