@article{VTPMK_2023_4_a4,
author = {V. I. Uskov},
title = {Cauchy problem for a sedond-order degeneracy differential equation in a {Banach} space},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {70--80},
year = {2023},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_4_a4/}
}
TY - JOUR AU - V. I. Uskov TI - Cauchy problem for a sedond-order degeneracy differential equation in a Banach space JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 70 EP - 80 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_4_a4/ LA - ru ID - VTPMK_2023_4_a4 ER -
%0 Journal Article %A V. I. Uskov %T Cauchy problem for a sedond-order degeneracy differential equation in a Banach space %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 70-80 %N 4 %U http://geodesic.mathdoc.fr/item/VTPMK_2023_4_a4/ %G ru %F VTPMK_2023_4_a4
V. I. Uskov. Cauchy problem for a sedond-order degeneracy differential equation in a Banach space. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2023), pp. 70-80. http://geodesic.mathdoc.fr/item/VTPMK_2023_4_a4/
[1] Kopachevskij N. D., Krejn S. G., Ngo Z. K., Operator methods in linear hydrodynamics, Nauka Publ., Moscow, 1989, 413 pp. (in Russian) | MR
[2] Dorf R. C., Bishop R. H., Modern Control Systems, Pearson Education, New Jersey, 2008, 1045 pp.
[3] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and Uniform Decay for a Non-Linear Viscoelastic Equation with Strong Damping”, Mathematical Methods in the Applied Sciences, 24 (2001), 1043–1053 | DOI | MR | Zbl
[4] Botoroeva M. N., Budnikova O. S., Solovarova L. S., “Sampling boundary conditions for second order differential-algebraic equations”, BSU Bulletin. Mathematics, Informatics, 3 (2019), 32–41 (in Russian) | DOI
[5] Orlov S. S., “The continuous solutions of a singular integro-differential equation of the second order in Banach spaces”, Proceedings of Irkutsk State University. Series: Mathematics, 1 (2009), 328–332 (in Russian)
[6] Uskov V. I., “Solution of a second-order algebraic-differential equation with respect to the derivative”, Russian Universities Reports. Mathematics, 26:136 (2021), 414–420 (in Russian) | DOI | Zbl
[7] Zubova S. P., “On the solvability of the Cauchy problem for a descriptor pseudoregular equation in a Banach space”, Bulletin of the Voronezh State University. Series: Physics. Mathematics, 2013, no. 2, 192–198 (in Russian) | Zbl
[8] Yudin R. V., Popikov P. I., Uskov V. I., Platonov A. A., Popikov V. P., Kanishchev D. A., “Matematicheskaya model rabochikh protsessov beschokernogo trelyovochnogo zakhvata s energosberegayushchim gidroprivodom”, Resources and Technology, 19:1 (2022), 72–86 (in Russian) | DOI
[9] Nikolsky S., “Linear equations in normed linear spaces”, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 7:3 (1943), 147–166 (in Russian) | Zbl
[10] Zubova S. P., Uskov V. I., “Asymptotic Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case”, Mathematical Notes, 103:3 (2018), 395–404 | DOI | DOI | MR | Zbl
[11] Krejn S. G., Linear differential equations in Banach space, Nauka Publ., Moscow, 1967, 464 pp. (in Russian)