Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 77-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Integral-differential parabolic equations are studied in a multidimensional domain with boundary conditions of the first kind. For each problem, a difference scheme is constructed with the order of approximation $O(|h|^2+\tau^{m_\sigma})$, where $m_\sigma = 1$ if $\sigma\neq0.5$ and $m_ \sigma = 2$, if $\sigma=0.5$, an a priori estimate is obtained by the method of energy inequalities for solving the difference problem. The obtained estimates imply the uniqueness and stability of the solution with respect to the right-hand side and initial data, as well as the convergence of the solution of the difference problem to the solution of the corresponding original differential problem at a rate of $O(|h|^2+\tau^2)$ for $\sigma = 0.5$.
Keywords: multidimensional problem, first boundary value problem, integral equation, difference scheme, a priori estimate, stability and convergence of difference schemes.
Mots-clés : parabolic equation
@article{VTPMK_2023_3_a4,
     author = {M. KH. Beshtokov and Z. V. Beshtokova},
     title = {Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {77--91},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
AU  - Z. V. Beshtokova
TI  - Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 77
EP  - 91
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/
LA  - ru
ID  - VTPMK_2023_3_a4
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%A Z. V. Beshtokova
%T Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 77-91
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/
%G ru
%F VTPMK_2023_3_a4
M. KH. Beshtokov; Z. V. Beshtokova. Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 77-91. http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/

[1] Imanaliev M. I., Nonlinear integro-differential partial differential equations, Ilim, Bishkek, 1992, 111 pp. (in Russian)

[2] Nakhushev A. M., Equations of mathematical biology, Vysshaya shkola, Moscow, 1995, 301 pp. (in Russian)

[3] Krasnov M. L., Integral equations: an Introduction to Theory, Nauka Publ., Moscow, 1975, 302 pp. (in Russian)

[4] Vajnberg M. M., “Integro-differentsialnye uravneniya”, Itogi nauki. Seriya Matematicheskij analiz. Teoriya veroyatnostej. Regulirovanie, 1964, 5–37, VINITI, M. (in Russian)

[5] Ashabokov B. A., Shapovalov A. V., Convective clouds: numerical models simulation results under natural conditions and under active influence, Nalchik, 2008, 254 pp. (in Russian)

[6] Kogan E. L., Mazin I. P., Sergeev B. N., Khvorostyanov V. I., Chislennoe modelirovanie oblakov, Gidrometeoizdat, 1984, 186 pp. (in Russian)

[7] Berry E. X., “Cloud droplet growth by collection”, Journal of the Atmospheric Sciences, 24:6 (1967), 688–701 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Berry E. X., Reinhardt R. L., “An analysis of cloud drop growth by collection. Part I. Double distributions”, Journal of the Atmospheric Sciences, 31:7 (1974), 1814–1824 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[9] Berry E. X., Reinhardt R. L., “An analysis of cloud drop growth by collection. Part II. Single initial distributions”, Journal of the Atmospheric Sciences, 31:7 (1974), 1825–1831 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[10] Grasselli M., “Uniform attractors of nonautonomous dynamical systems with memory”, Progress in nonlinear differential equations and their applications, Birkhauser Verlag, Basel, 2002, 155–178 | MR | Zbl

[11] Beshtokova Z. V., “K nelokalnym kraevym zadacham dlya mnogomernogo parabolicheskogo uravneniya s peremennymi koeffitsientami”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 2, 107–122 (in Russian)

[12] Beshtokova Z. V., “A locally one-dimensional scheme for a general parabolic equation with a non-local source”, Proceedings of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2017, no. 3 (77), 5–12 (in Russian)

[13] Samarskij A. A., Theory of Difference Schemes, Nauka Publ., Moscow, 1983, 616 pp. (in Russian)

[14] Samarskij A. A., Gulin A. B., Stability of difference schemes, Nauka Publ., Moscow, 1973, 415 pp. (in Russian) | MR

[15] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody linejnoj algebry, Fizmatgiz, Moscow, 1960, 656 pp. (in Russian) | MR