Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 77-91
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Integral-differential parabolic equations are studied in a multidimensional domain with boundary conditions of the first kind. For each problem, a difference scheme is constructed with the order of approximation $O(|h|^2+\tau^{m_\sigma})$, where $m_\sigma = 1$ if $\sigma\neq0.5$ and $m_ \sigma = 2$, if $\sigma=0.5$, an a priori estimate is obtained by the method of energy inequalities for solving the difference problem. The obtained estimates imply the uniqueness and stability of the solution with respect to the right-hand side and initial data, as well as the convergence of the solution of the difference problem to the solution of the corresponding original differential problem at a rate of $O(|h|^2+\tau^2)$ for $\sigma = 0.5$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
multidimensional problem, first boundary value problem, integral equation, difference scheme, a priori estimate, stability and convergence of difference schemes.
Mots-clés : parabolic equation
                    
                  
                
                
                Mots-clés : parabolic equation
@article{VTPMK_2023_3_a4,
     author = {M. KH. Beshtokov and Z. V. Beshtokova},
     title = {Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {77--91},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/}
}
                      
                      
                    TY - JOUR AU - M. KH. Beshtokov AU - Z. V. Beshtokova TI - Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 77 EP - 91 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/ LA - ru ID - VTPMK_2023_3_a4 ER -
%0 Journal Article %A M. KH. Beshtokov %A Z. V. Beshtokova %T Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 77-91 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/ %G ru %F VTPMK_2023_3_a4
M. KH. Beshtokov; Z. V. Beshtokova. Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 77-91. http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a4/
