Mathematical models of a fuzzy random variable: a comparative study
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 41-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A comparative study of approaches to the definition of a fuzzy random variable and its numerical characteristics is carried out. Examples of the fulfillment and non-fulfillment of properties characteristic of ordinary random variables with different definitions of fuzzy random variables are given. Methods of identification of the expected value of fuzzy random variables are proposed.
Keywords: fuzzy variable, fuzzy random variable, Quakernaak model, Puri and Ralescu model, Nahmias model, Chachi/Liu model.
@article{VTPMK_2023_3_a2,
     author = {I. S. Soldatenko and I. B. Bresler and S. A. Rogonov and A. V. Yazenin},
     title = {Mathematical models of a fuzzy random variable: a comparative study},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {41--63},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a2/}
}
TY  - JOUR
AU  - I. S. Soldatenko
AU  - I. B. Bresler
AU  - S. A. Rogonov
AU  - A. V. Yazenin
TI  - Mathematical models of a fuzzy random variable: a comparative study
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 41
EP  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a2/
LA  - ru
ID  - VTPMK_2023_3_a2
ER  - 
%0 Journal Article
%A I. S. Soldatenko
%A I. B. Bresler
%A S. A. Rogonov
%A A. V. Yazenin
%T Mathematical models of a fuzzy random variable: a comparative study
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 41-63
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a2/
%G ru
%F VTPMK_2023_3_a2
I. S. Soldatenko; I. B. Bresler; S. A. Rogonov; A. V. Yazenin. Mathematical models of a fuzzy random variable: a comparative study. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 41-63. http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a2/

[1] Féron R., “Ensembles aléatoires flous”, Comptes rendus de l'Académie des Sciences, 282 (1976), 903–906 | MR | Zbl

[2] Féron R., “Ensembles flous attachés à un ensemble aléatoire flou”, Publications Econométriques, 9 (1976), 51–66 | MR | Zbl

[3] Kwakernaak H., “Fuzzy random variables - I. Definitions and theorems”, Information Sciences, 15:1 (1978), 1–29 | DOI | MR | Zbl

[4] Kwakernaak H., “Fuzzy Random Variables - II. Algorithms and Examples for Discrete Case”, Information Sciences, 17 (1979), 253–278 | DOI | MR | Zbl

[5] Kruse R., Meyer K. D., Statistics with Vague Data, Springer, Dordrecht, 1987 | DOI | MR

[6] Nahmias S., “Fuzzy variables in a random environment”, Advances in Fuzzy Set Theory and Applications, eds. M.M. Gupta, R.K. Ragade, R.R. Yager, North-Holland, Amsterdam, 1979, 165–180 | MR

[7] Puri M. L., Ralescu D. A., “Fuzzy random variables”, Journal of Mathematical Analysis and Applications, 114:2 (1986), 409–422 | DOI | MR | Zbl

[8] Chachi J., “On Distribution Characteristics of a Fuzzy Random Variable”, Austrian Journal of Statistics, 47 (2018), 53–67 | DOI

[9] Zadeh L. A., “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl

[10] Zadeh L. A., “Fuzzy sets as a basis for a theory of possibility”, Fuzzy Sets and Systems, 1 (1978), 3–28 | DOI | MR | Zbl

[11] Nahmias S., “Fuzzy variables”, Fuzzy Sets and Systems, 1:2 (1978), 97–110 | DOI | MR | Zbl

[12] Dubois D., Prade H., “Fuzzy numbers: an overview”, Analysis of Fuzzy Information, v. 2, ed. J. Bezdek, CRC-Press, Boca Raton, 1988, 3–39 | MR

[13] Dubois D., Prade H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980 | MR | Zbl

[14] Liu B., Liu Y. K., “Expected Value of Fuzzy Variable and Fuzzy Expected Value Models”, IEEE Transactions on Fuzzy Systems, 10 (2002), 445–450 | DOI | MR

[15] Liu Y. K., Liu B., “Fuzzy Random Variables: A Scalar Expected Value Operator”, Fuzzy Optimization and Decision Making, 2 (2003), 143–160 | DOI | MR | Zbl

[16] Liu B., Uncertainty Theory, Springer-Verlag, Berlin, 2016 | MR

[17] Klement E. P., Puri M. L., Ralescu D. A., “Limit theorems for fuzzy random variables”, Proceedings of the Royal Society, 407 (1986), 171–182 | MR | Zbl

[18] Diamond P., Kloeden P., Metric Spaces of Fuzzy Sets, World Scientific, Singapore, 1994 | MR | Zbl

[19] Kratschmer V., “A unified approach to fuzzy random variables”, Fuzzy Sets and Systems, 123 (2001), 1–9 | DOI | MR | Zbl

[20] Couso I., Sánchez L., “Higher order models for fuzzy random variables”, Fuzzy Sets and Systems, 159 (2008), 237–258 | DOI | MR | Zbl

[21] Miyakoshi M., Shimbo M., Set representations of a fuzzy set and its application to Jensen’s inequality, Preprint

[22] Aumann R. J., “Integrals of Set-Valued Functions”, Journal of Mathematical Analysis and Applications, 12 (1965), 1–12 | DOI | MR | Zbl

[23] Yazenin A., Wagenknecht M., Possibilistic Optimization. A Measure-Based Approach, Brandenburgische Technische Universitat, Cotbus, Germany, 1996, 133 pp.

[24] Liu B., Theory and Practice of Uncertain Programming, Verlag, Heidelberg, Physica, 2002 | Zbl

[25] Peng J., Liu B., “Some Properties of Optimistic and Pessimistic Values of Fuzzy”, IEEE International Conference on Fuzzy Systems, 2 (2004), 745–750 | MR

[26] Shapiro A. F., “Fuzzy random variables”, Insurance: Mathematics and Economics, 44:2 (2009), 307–314 | DOI | MR | Zbl

[27] Khokhlov M. Yu., Yazenin A. V., “Calculation of numerical characteristics of fuzzy random variables”, Herald of Tver State University. Series: Applied Mathematics, 2003, no. 1, 39–43 (in Russian) | MR

[28] Khokhlov M. Yu., “Fuzzy random variables and their numerical characteristics”, Methods and algorithms for the study of optimal control problems, Tver, 2000 (in Russian)

[29] Shiryaev A. N., Veroyatnost, Moscow, 2007, 552 pp. (in Russian)