Temperature distribution in a half-space containing spherical inclusion
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 5-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Description of thermodynamic processes in disperse media placed in containers and tubes becomes more precise if thermodynamic interaction of disperse particles and container walls is taken into account. The paper deals with spherical particle without internal heat sources. This particle is placed near a plane wall and distorts temperature distribution in a medium because of difference in heat conduction coefficients. Authors obtain that it is convenient to use reflection and continue the half-space bounded by the wall, thus replacing system “plane + sphere” by another one: “two symmetric spheres”. To solve Laplace equation in unbounded space authors use multipole expansion; structure of coefficients in this expansion depends on symmetry of particles' configuration and of boundary conditions. The paper also discusses possibility of limit transition from system “a large sphere + a small sphere” to system “plane + sphere” in order to solve a problem about a spherical particle in a half-space.
Keywords: thermodynamic interaction, fictituous particle, nonlinear tensor function.
Mots-clés : Laplace equation, multipole
@article{VTPMK_2023_3_a0,
     author = {A. O. Syromyasov and Yu. P. Edeleva},
     title = {Temperature distribution in a half-space containing spherical inclusion},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--18},
     year = {2023},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a0/}
}
TY  - JOUR
AU  - A. O. Syromyasov
AU  - Yu. P. Edeleva
TI  - Temperature distribution in a half-space containing spherical inclusion
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 5
EP  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a0/
LA  - ru
ID  - VTPMK_2023_3_a0
ER  - 
%0 Journal Article
%A A. O. Syromyasov
%A Yu. P. Edeleva
%T Temperature distribution in a half-space containing spherical inclusion
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 5-18
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a0/
%G ru
%F VTPMK_2023_3_a0
A. O. Syromyasov; Yu. P. Edeleva. Temperature distribution in a half-space containing spherical inclusion. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2023), pp. 5-18. http://geodesic.mathdoc.fr/item/VTPMK_2023_3_a0/

[1] Ejnshtejn A., “A new definition of the size of molecules”, Collected Scientific Works, vol. III. Works on kinetic theory, radiation theory and fundamentals of quantum mechanics, eds. I. E. Tamma, Ya. A. Smorodinskogo, B. G. Kuznetsova, Nauka Publ., Moscow, 1966, 75–91 | MR

[2] Maksvell Dzh. K., A treatise on electricity and magnetism, Nauka Publ., Moscow, 1989 (in Russian) | MR

[3] Batchelor G. K., Green J. T., “The hydrodynamic interaction of two small freely-moving spheres in a linear flow field”, Journal of Fluid Mechanics, 56:2 (1972), 375–400 | DOI | Zbl

[4] Berdichevskij A. L., “On the effective thermal conductivity of media with periodically located inclusions”, Reports of the USSR Academy of Sciences, 247:6 (1979), 1363–1367 (in Russian) | MR

[5] Chiu C. -L., Fan C. -M., Chu C. R., “Numerical analysis of two spheres falling side by side”, Physics of Fluids, 34:7 (2022) | DOI | Zbl

[6] Bakhvalov N. S., Panasenko G. P., Averaging of processes in periodic environments. Mathematical problems of mechanics of composite materials, Nauka Publ., Moscow, 1984, 352 pp. (in Russian)

[7] Thakur R., Sharma A., Govindarajan R., “Early evolution of optimal perturbations in a viscosity-stratified channel”, Journal of Fluid Mechanics, 914 (2021) | DOI | MR | Zbl

[8] Sennitskij V. L., “On the force interaction of a ball and a viscous liquid in the presence of a wall”, Applied Mathematics and technical physics, 41:1 (2000), 57–62 (in Russian) | MR

[9] Baranov V. E., Martynov S. I., “Modeling of particle dynamics in a viscous liquid in the presence of a flat wall”, Journal of Computational Mathematics and Mathematical Physics, 50:9 (2010), 1669–1686 (in Russian) | MR | Zbl

[10] Syromyasov A. O., “Thermodynamic interaction of spherical particles in a medium with a constant temperature gradient”, Bulletin of the Nizhny Novgorod University named after N. I. Lobachevsky, 2011, no. 4, 1158–1160 (in Russian)

[11] Sedov L. I., Mechanics of Continuous Media, v. 1, World Scientific Publishing Company, New Jersey, 1997, 528 pp. | MR | MR | Zbl

[12] Landau L. D., Lifshitz E. M., Fluid Mechanics, 2nd ed., Butterworth–Heinemann, Waltham, Massachusetts, 1986, 736 pp. | MR