Generalized algorithm of computation of coefficients of the covariant Taylor series
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 51-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we deal with the algorithm for computing covariant power expansions of tensor fields in Fermi coordinates, introduced in some neighborhood of a parallelized $m$-dimensional submanifold (${m=0, 1,\ldots, $m=0$ corresponds to a point), by transforming the expansions to the corresponding Taylor series. The method of covariant series can be useful in solution of some problems of general relativity, in particular, it is convenient for computing of the spacetime metric components, and also it is used in the theory of quantum gravity. The algorithm under consideration is the generalization of [14]. For an arbitrary real analytic tensor field, the coefficients of such series are expressed in terms of its covariant derivatives, the connection components and covariant derivatives of the curvature and the torsion. The algorithm computes the corresponding Taylor polynomials of arbitrary orders for the field components and is applicable to connections that are, in general, nonmetric and not torsion-free. It is shown that this algorithm belongs to the complexity class LEXP.
Keywords: pseudo-Riemannian manifolds, tensor fields, covariant Taylor series, computational complexity of algorithms.
@article{VTPMK_2023_2_a4,
     author = {I. M. Potashov},
     title = {Generalized algorithm of computation of coefficients of the covariant {Taylor} series},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {51--66},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/}
}
TY  - JOUR
AU  - I. M. Potashov
TI  - Generalized algorithm of computation of coefficients of the covariant Taylor series
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 51
EP  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/
LA  - ru
ID  - VTPMK_2023_2_a4
ER  - 
%0 Journal Article
%A I. M. Potashov
%T Generalized algorithm of computation of coefficients of the covariant Taylor series
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 51-66
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/
%G ru
%F VTPMK_2023_2_a4
I. M. Potashov. Generalized algorithm of computation of coefficients of the covariant Taylor series. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 51-66. http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/

[1] Veblen O., Thomas T. Y., “The geometry of paths”, Transactions of the American Mathematical Society, 25 (1923), 551–608 | DOI | MR

[2] Eisenhart L. P., Riemannian Geometry, Princeton University Press, Princeton, 1926, 272 pp. | MR

[3] Petrov A. Z., New methods in general relativity, Nauka Publ., Moscow (in Russian) | MR

[4] Tsirulyov A. N., “Analytic continuation of tensor fields along geodesics by covariant Taylor series”, Theoretical and mathematical physics, 102:3 (1995), 245–250 (in Russian) | DOI | MR | Zbl

[5] Mueller U., Schubert C., Ven A., “A closed formula for the Riemann normal coordinate expansion”, General Relativity and Gravitation, 31 (1999), 1759–1768 | DOI | MR

[6] Higashijima K., Itou E., Nitta M., “Normal Coordinates in Kähler Manifolds and the Background Field Method”, Progress of Theoretical Physics, 108 (2002), 185–202 | DOI | MR | Zbl

[7] Iliev B. Z., Handbook of Normal Frames and Coordinates, Birkhäuser Verlag, Berlin, 2006, 73 pp. | MR | Zbl

[8] Brewin L., “Riemann normal coordinate expansions using Cadabra”, Classical and Quantum Gravity, 26:17 (2009), 175017 | DOI | MR | Zbl

[9] Klein D., Collas P., “Exact Fermi coordinates for a class of space-times”, Journal of Mathematical Physics, 51 (2010), 022501 | DOI | MR | Zbl

[10] Potashov I. M., “Covariant series in the normal neighborhood of a submanifold”, Mathematical Modelling and Geometry, 2021, no. 2, 1–22 https://mmg.tversu.ru/images/publications/2021-921.pdf | DOI

[11] Manasse F. K., Misner C. W., “Fermi normal coordinates and some basic concepts in differential geometry”, Journal of Mathematical Physics, 4 (1963), 735–745 | DOI | MR | Zbl

[12] Marzlin K. -P., “On the physical meaning of Fermi coordinates”, General Relativity and Gravitation, 26 (1994), 619–636 | DOI | MR

[13] Mukhopadhyay P., “All order covariant tubular expansion”, Reviews in Mathematical Physics, 26:1 (2013), 1350019 | DOI | MR

[14] Potashov I. M., Tsirulev A. N., “Computational Algorithm for Covariant Series Expansions in General Relativity”, European Physical Journal Web of Conferences, 173 (2018), 03021 https://doi.org/10.1051/epjconf/201817303021 | DOI

[15] Ottewill A.C., Wardell B., “Transport equation approach to calculations of Hadamar Green functions and non-coincident DeWitt coefficients”, Physical Review D, 84 (2011), 104039 | DOI

[16] Potashov I. M., Svidetelstvo o gosudarstvennoj registratsii programmy dlya EVM No2015618712. Vychislenie komponent kovariantnogo ryada Tejlora metriki prostranstva-vremeni, 2015 (in Russian)