@article{VTPMK_2023_2_a4,
author = {I. M. Potashov},
title = {Generalized algorithm of computation of coefficients of the covariant {Taylor} series},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {51--66},
year = {2023},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/}
}
TY - JOUR AU - I. M. Potashov TI - Generalized algorithm of computation of coefficients of the covariant Taylor series JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 51 EP - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/ LA - ru ID - VTPMK_2023_2_a4 ER -
%0 Journal Article %A I. M. Potashov %T Generalized algorithm of computation of coefficients of the covariant Taylor series %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 51-66 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/ %G ru %F VTPMK_2023_2_a4
I. M. Potashov. Generalized algorithm of computation of coefficients of the covariant Taylor series. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 51-66. http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a4/
[1] Veblen O., Thomas T. Y., “The geometry of paths”, Transactions of the American Mathematical Society, 25 (1923), 551–608 | DOI | MR
[2] Eisenhart L. P., Riemannian Geometry, Princeton University Press, Princeton, 1926, 272 pp. | MR
[3] Petrov A. Z., New methods in general relativity, Nauka Publ., Moscow (in Russian) | MR
[4] Tsirulyov A. N., “Analytic continuation of tensor fields along geodesics by covariant Taylor series”, Theoretical and mathematical physics, 102:3 (1995), 245–250 (in Russian) | DOI | MR | Zbl
[5] Mueller U., Schubert C., Ven A., “A closed formula for the Riemann normal coordinate expansion”, General Relativity and Gravitation, 31 (1999), 1759–1768 | DOI | MR
[6] Higashijima K., Itou E., Nitta M., “Normal Coordinates in Kähler Manifolds and the Background Field Method”, Progress of Theoretical Physics, 108 (2002), 185–202 | DOI | MR | Zbl
[7] Iliev B. Z., Handbook of Normal Frames and Coordinates, Birkhäuser Verlag, Berlin, 2006, 73 pp. | MR | Zbl
[8] Brewin L., “Riemann normal coordinate expansions using Cadabra”, Classical and Quantum Gravity, 26:17 (2009), 175017 | DOI | MR | Zbl
[9] Klein D., Collas P., “Exact Fermi coordinates for a class of space-times”, Journal of Mathematical Physics, 51 (2010), 022501 | DOI | MR | Zbl
[10] Potashov I. M., “Covariant series in the normal neighborhood of a submanifold”, Mathematical Modelling and Geometry, 2021, no. 2, 1–22 https://mmg.tversu.ru/images/publications/2021-921.pdf | DOI
[11] Manasse F. K., Misner C. W., “Fermi normal coordinates and some basic concepts in differential geometry”, Journal of Mathematical Physics, 4 (1963), 735–745 | DOI | MR | Zbl
[12] Marzlin K. -P., “On the physical meaning of Fermi coordinates”, General Relativity and Gravitation, 26 (1994), 619–636 | DOI | MR
[13] Mukhopadhyay P., “All order covariant tubular expansion”, Reviews in Mathematical Physics, 26:1 (2013), 1350019 | DOI | MR
[14] Potashov I. M., Tsirulev A. N., “Computational Algorithm for Covariant Series Expansions in General Relativity”, European Physical Journal Web of Conferences, 173 (2018), 03021 https://doi.org/10.1051/epjconf/201817303021 | DOI
[15] Ottewill A.C., Wardell B., “Transport equation approach to calculations of Hadamar Green functions and non-coincident DeWitt coefficients”, Physical Review D, 84 (2011), 104039 | DOI
[16] Potashov I. M., Svidetelstvo o gosudarstvennoj registratsii programmy dlya EVM No2015618712. Vychislenie komponent kovariantnogo ryada Tejlora metriki prostranstva-vremeni, 2015 (in Russian)