@article{VTPMK_2023_2_a2,
author = {Yu. A. Malyshkin},
title = {Number of maximal rooted trees in preferential attachment model via stochastic approximation},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {28--36},
year = {2023},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/}
}
TY - JOUR AU - Yu. A. Malyshkin TI - Number of maximal rooted trees in preferential attachment model via stochastic approximation JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 28 EP - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/ LA - en ID - VTPMK_2023_2_a2 ER -
%0 Journal Article %A Yu. A. Malyshkin %T Number of maximal rooted trees in preferential attachment model via stochastic approximation %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 28-36 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/ %G en %F VTPMK_2023_2_a2
Yu. A. Malyshkin. Number of maximal rooted trees in preferential attachment model via stochastic approximation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 28-36. http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/
[1] Chen H. F., Stochastic Approximation and Its Applications, v. 64, Nonconvex Optimization and its Applications, Springer, New York, 2002, 360 pp. | DOI | MR
[2] Frieze A., Karonski M., Introduction to random graphs, Cambridge University Press, 2016, 478 pp. | MR | Zbl
[3] Garavaglia A., Preferential attachment models for dynamic networks, Technische Universiteit Eindhoven, 2019, 305 pp.
[4] Malyshkin Y. A., “$\gamma$-variable first-order logic of preferential attachment random graphs”, Discrete Applied Mathematics, 314 (2022), 223–227 | DOI | MR | Zbl
[5] Malyshkin Y. A., “Number of maximal rooted trees in uniform attachment model via stochastic approximation”, Vestnik TvGU. Seriya: Prikladnaya Matematika, 3 (2022), 27–34
[6] Malyshkin Y. A., Zhukovskii M. E., “MSO 0-1 law for recursive random trees”, Statistics and Probability Letters, 173 (2021), 109061 | DOI | MR | Zbl
[7] Malyshkin Y. A., Zhukovskii M. E., Logical convergence laws via stochastic approximation and Markov processes, Preprint at https://arxiv.org/abs/2210.13437, 2022
[8] Pemantle R., “A survey of random processes with reinforcement”, Probability Surveys, 4 (2007), 1–79 | DOI | MR | Zbl