Number of maximal rooted trees in preferential attachment model via stochastic approximation
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 28-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the asymptotic behavior of the number of maximal trees in the preferential attachment model. In our model, we consider a sequence of graphs built by the following recursive rule. We start with the complete graph on $m+1$ vertices, $m>1$. Then on the $n+1$ step, we add vertex $n+1$ and draw $m$ edges from it to different vertices from $1,\ldots,n$, chosen with probabilities proportional to their degrees plus some positive parameter $\beta$. We prove the convergence speed for the number of maximal trees in such a model using the stochastic approximation technique.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
random graphs, preferential attachment, stochastic approximation.
                    
                    
                    
                  
                
                
                @article{VTPMK_2023_2_a2,
     author = {Yu. A. Malyshkin},
     title = {Number of maximal rooted trees in preferential attachment model via stochastic approximation},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {28--36},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/}
}
                      
                      
                    TY - JOUR AU - Yu. A. Malyshkin TI - Number of maximal rooted trees in preferential attachment model via stochastic approximation JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 28 EP - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/ LA - en ID - VTPMK_2023_2_a2 ER -
%0 Journal Article %A Yu. A. Malyshkin %T Number of maximal rooted trees in preferential attachment model via stochastic approximation %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 28-36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/ %G en %F VTPMK_2023_2_a2
Yu. A. Malyshkin. Number of maximal rooted trees in preferential attachment model via stochastic approximation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 28-36. http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a2/
