Modeling of rectification of a nonlinear-elastic cylindrical layer taking into account the change in the direction of transversal isotropy
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers a mathematical model of the deformation of a body made of an incompressible transversally isotropic nonlinear elastic material. Particular attention is paid to the vector characteristic of a transversally isotropic body, which indicates the direction of the axis of transversal isotropy, as well as to the change in this characteristic during deformation. It is noted that under deformation of a certain type, a transversely isotropic material behaves like a Treloar material. A special case of the problem of deformation of an incompressible transversally isotropic nonlinear elastic cylindrical layer is studied, and an exact analytical solution of the problem is obtained for this case.
Mots-clés : transversal anisotropy
Keywords: non-linearity, large deformations.
@article{VTPMK_2023_2_a1,
     author = {A. E. Belkin},
     title = {Modeling of rectification of a nonlinear-elastic cylindrical layer taking into account the change in the direction of transversal isotropy},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {17--27},
     year = {2023},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a1/}
}
TY  - JOUR
AU  - A. E. Belkin
TI  - Modeling of rectification of a nonlinear-elastic cylindrical layer taking into account the change in the direction of transversal isotropy
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 17
EP  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a1/
LA  - ru
ID  - VTPMK_2023_2_a1
ER  - 
%0 Journal Article
%A A. E. Belkin
%T Modeling of rectification of a nonlinear-elastic cylindrical layer taking into account the change in the direction of transversal isotropy
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 17-27
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a1/
%G ru
%F VTPMK_2023_2_a1
A. E. Belkin. Modeling of rectification of a nonlinear-elastic cylindrical layer taking into account the change in the direction of transversal isotropy. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2023), pp. 17-27. http://geodesic.mathdoc.fr/item/VTPMK_2023_2_a1/

[1] Lurie A. I., Nonlinear theory of elasticity, Nauka Publ., Moscow, 1980, 512 pp. (in Russian)

[2] Merodio J., Ogden R. W., “Mechanical response of fiber-reinforced incompressible non-linearly elastic solids”, International Journal of Non-Linear Mechanics, 2005, no. 40, 213–227 | DOI | MR | Zbl

[3] Merodio J., Ogden R. W., “Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation”, Archives of Mechanics, 2002, no. 54, 525–552 | MR | Zbl

[4] O'Shea D. J., Attard M. M., Kellermann D. C., “Hyperelastic constitutive modelling for transversely isotropic composites and orthotropic biological tissues”, International Journal of Solids and Structures, 169 (2019), 1–20 | DOI

[5] Treloar L. R. G., The Physics of Rubber Elasticity, Oxford University Press, 1975

[6] Mooney M., “A theory of large elastic deformation”, Journal of Applied Physics, 11 (1940), 582–592 | DOI

[7] Levin V. A., Zingerman K. M., Belkin A. E., “Nekotorye rezultaty tochnogo resheniya zadachi teorii mnogokratnogo nalozheniya bolshikh deformatsij o soedinenii predvaritelno nagruzhennykh krivolinejnykh sloyov iz nelinejno uprugogo materiala”, Materialy konferentsii “Lomonosovskie chteniya-2021” (in Russian)

[8] Levin V. A., Tarasiev G. S., “Superposition of large elastic deformations in the space of final-states”, Doklady Akademii Nauk SSSR, 251:63 (1980), 66 | Zbl

[9] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution to the problem of biaxial loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under large strains”, European Journal of Mechanics - A/Solids, 88 (2021), 104237 | DOI | MR | Zbl

[10] Levin V. A., Zubov L. M., Zingerman K. M., “The torsion of a composite, nonlinear-elastic cylinder with an inclusion having initial large strains”, International Journal of Solids and Structures, 51 (2014), 1403–1409 | DOI | MR

[11] Levin V. A., Zubov L. M., Zingerman K. M., “Multiple joined prestressed orthotropic layers under large strains”, International Journal of Engineering Science, 133 (2018), 47–59 | DOI | MR | Zbl

[12] Levin V. A., Zubov L. M., Zingerman K. M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, International Journal of Solids and Structures, 67-68 (2015), 244–249 | DOI | MR