On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2023), pp. 49-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of motion of a solid rotating body in a central gravitational field is proposed, which takes into account the mass-geometric characteristics of the body and the factor of rotation of the body relative to its own center of mass. The axis of rotation of the body (relative to the center of mass) is the line connecting the center of mass of the body and the center of the inertial coordinate system (the center of the gravitational field). The distance from the center of mass of the body to the beginning of the inertial system is constant during movement. In this case, the mathematical model of motion is Euler's dynamic equations for a rigid body with a fixed point (the classic "Euler-Poinsot case"). The Euler-Poinsot equations are presented in projection on inertial axes, on normal axes, and also in classical form - in projection on axes connected with a body. It is established that at a "small" angular velocity of rotation relative to the center of mass, the motion of a body with a high degree of accuracy coincides with the classical model of the motion of a point mass in the central.
Keywords: central field, gravitational field, Newton's law, Euler-Poinsot case, energy integral, kinetic moment vector, orbital plane.
Mots-clés : Euler equation
@article{VTPMK_2023_1_a3,
     author = {V. N. Onikiychuk and I. Onikiychuk},
     title = {On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {49--83},
     year = {2023},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/}
}
TY  - JOUR
AU  - V. N. Onikiychuk
AU  - I. Onikiychuk
TI  - On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2023
SP  - 49
EP  - 83
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/
LA  - ru
ID  - VTPMK_2023_1_a3
ER  - 
%0 Journal Article
%A V. N. Onikiychuk
%A I. Onikiychuk
%T On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2023
%P 49-83
%N 1
%U http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/
%G ru
%F VTPMK_2023_1_a3
V. N. Onikiychuk; I. Onikiychuk. On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2023), pp. 49-83. http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/

[1] Beletskij V. V., Essays on the motion of cosmic bodies, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1972, 360 pp. (in Russian)

[2] Duboshin G. N., Celestial mechanics. Main tasks and methods, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1968 (in Russian)

[3] Aksenov E. P., Theory of motion of artificial Earth satellites, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1977, 360 pp. (in Russian)

[4] Onikijchuk V. N., Onikijchuk I. V., “Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations”, Herald of Tver State University. Series: Applied Mathematics, 2022, no. 3, 62–75 (in Russian) | DOI

[5] Arnold V. I., Mathematical methods of classical mechanics, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1974, 432 pp. (in Russian)

[6] Onikijchuk V. N., The Great Mystery of Leonhard Euler, Professional Publishing House, SPb., 2007, 520 pp. (in Russian)

[7] Lagranzh Zh. L., Analytical mechanics, Gostekhizdat Publishing House, Moscow, 1950 (in Russian)

[8] Appel P., Theoretical mechanics, Fizmatgiz, Nauka, Moscow, 1960 (in Russian)

[9] Kozlov V. V., General theory of vortices, Publishing House Udmurt University, Izhevsk, 1998, 238 pp. (in Russian)

[10] Markeev A. P., Teoreticheskaya mekhanika, Regular and Chaotic Dynamics Publ., Izhevsk, 1999, 572 pp. (in Russian)

[11] Amelkin N. I., Solid body dynamics, MIPT, Moscow, 2010 (in Russian)

[12] Borisov A. V., Mamaev I. S., Solid body dynamics, Regular and Chaotic Dynamics Publ., Izhevsk, 2001, 384 pp. (in Russian)

[13] Klein F., Mathematical Theory of the Top, New York, 1897

[14] Zhuravlev V. F., Fundamentals of theoretical mechanics, Fizmatlit Publ., Moscow, 2001, 320 pp. (in Russian)

[15] Magnus K., Gyroscope. Theory and application, Mir Publ., Moscow, 1974, 527 pp. (in Russian)

[16] Arnold V. I., Kozlov V. V., Nejshtadt A. I., “Mathematical aspects of classical and celestial mechanics”, Modern problems of mathematics. Fundamental directions, VINITI Publ., Moscow, 1985 (in Russian)

[17] Scarborough J. B., The Gyroscope. Theory and Applications, Interscience Publishers, Inc., New York, 1957, 247 pp.

[18] Golubev Yu. F., Fundamentals of theoretical mechanics, MSU Publishing House, Moscow, 2000, 719 pp. (in Russian)

[19] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Factorial Publishing House, Moscow, 1995 (in Russian)

[20] Borisov A. V., Mamaev I. S., Poisson structures and Lie algebras in Hamiltonian mechanics, Publishing House Udmurt University, Izhevsk, 1999 (in Russian)