Mots-clés : Euler equation
@article{VTPMK_2023_1_a3,
author = {V. N. Onikiychuk and I. Onikiychuk},
title = {On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {49--83},
year = {2023},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/}
}
TY - JOUR AU - V. N. Onikiychuk AU - I. Onikiychuk TI - On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2023 SP - 49 EP - 83 IS - 1 UR - http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/ LA - ru ID - VTPMK_2023_1_a3 ER -
%0 Journal Article %A V. N. Onikiychuk %A I. Onikiychuk %T On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2023 %P 49-83 %N 1 %U http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/ %G ru %F VTPMK_2023_1_a3
V. N. Onikiychuk; I. Onikiychuk. On the dynamic effects of the motion of the center of mass of a rotating solid bodies in the central field. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 1 (2023), pp. 49-83. http://geodesic.mathdoc.fr/item/VTPMK_2023_1_a3/
[1] Beletskij V. V., Essays on the motion of cosmic bodies, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1972, 360 pp. (in Russian)
[2] Duboshin G. N., Celestial mechanics. Main tasks and methods, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1968 (in Russian)
[3] Aksenov E. P., Theory of motion of artificial Earth satellites, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1977, 360 pp. (in Russian)
[4] Onikijchuk V. N., Onikijchuk I. V., “Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations”, Herald of Tver State University. Series: Applied Mathematics, 2022, no. 3, 62–75 (in Russian) | DOI
[5] Arnold V. I., Mathematical methods of classical mechanics, Nauka. Glavnaya redaktsiya fiziko-matematicheskoj literatury, Moscow, 1974, 432 pp. (in Russian)
[6] Onikijchuk V. N., The Great Mystery of Leonhard Euler, Professional Publishing House, SPb., 2007, 520 pp. (in Russian)
[7] Lagranzh Zh. L., Analytical mechanics, Gostekhizdat Publishing House, Moscow, 1950 (in Russian)
[8] Appel P., Theoretical mechanics, Fizmatgiz, Nauka, Moscow, 1960 (in Russian)
[9] Kozlov V. V., General theory of vortices, Publishing House Udmurt University, Izhevsk, 1998, 238 pp. (in Russian)
[10] Markeev A. P., Teoreticheskaya mekhanika, Regular and Chaotic Dynamics Publ., Izhevsk, 1999, 572 pp. (in Russian)
[11] Amelkin N. I., Solid body dynamics, MIPT, Moscow, 2010 (in Russian)
[12] Borisov A. V., Mamaev I. S., Solid body dynamics, Regular and Chaotic Dynamics Publ., Izhevsk, 2001, 384 pp. (in Russian)
[13] Klein F., Mathematical Theory of the Top, New York, 1897
[14] Zhuravlev V. F., Fundamentals of theoretical mechanics, Fizmatlit Publ., Moscow, 2001, 320 pp. (in Russian)
[15] Magnus K., Gyroscope. Theory and application, Mir Publ., Moscow, 1974, 527 pp. (in Russian)
[16] Arnold V. I., Kozlov V. V., Nejshtadt A. I., “Mathematical aspects of classical and celestial mechanics”, Modern problems of mathematics. Fundamental directions, VINITI Publ., Moscow, 1985 (in Russian)
[17] Scarborough J. B., The Gyroscope. Theory and Applications, Interscience Publishers, Inc., New York, 1957, 247 pp.
[18] Golubev Yu. F., Fundamentals of theoretical mechanics, MSU Publishing House, Moscow, 2000, 719 pp. (in Russian)
[19] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Factorial Publishing House, Moscow, 1995 (in Russian)
[20] Borisov A. V., Mamaev I. S., Poisson structures and Lie algebras in Hamiltonian mechanics, Publishing House Udmurt University, Izhevsk, 1999 (in Russian)