Negative $\lambda$-binomial regression in dose-effect relationship
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 53-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concern to the problem of estimating the distribution function and its quantiles in the dose-effect relationships with nonparametric negative $\lambda$-binomial regression. Here, a kernel-based estimators of the distribution function are proposed, of which kernel is weighted by the negative $\lambda$-binomial random variable at each covariate. Our estimates are consistent, that is, they converge to their optimal values in probability as $n$, the number of observations, grow to infinity. It is shown that these estimates have a smaller asymptotic variance in comparison, in particular, with estimates of the Nadaray-Watson type and other estimates. Nonparametric quantiles estimators obtained by inverting a kernel estimator of the distribution function are offered. It is shown that the asymptotic normality of this bias-adjusted estimator holds under some regularity conditions. In the first part, the relations between the moments of the negative $\lambda$-binomial distribution are analyzed. A new characterization of the Poisson distribution is obtened.
Mots-clés : negative $\lambda$-binomial response model
Keywords: effective dose level, nonparametric estimate.
@article{VTPMK_2022_4_a4,
     author = {M. S. Tikhov},
     title = {Negative $\lambda$-binomial regression in dose-effect relationship},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {53--75},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a4/}
}
TY  - JOUR
AU  - M. S. Tikhov
TI  - Negative $\lambda$-binomial regression in dose-effect relationship
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 53
EP  - 75
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a4/
LA  - ru
ID  - VTPMK_2022_4_a4
ER  - 
%0 Journal Article
%A M. S. Tikhov
%T Negative $\lambda$-binomial regression in dose-effect relationship
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 53-75
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a4/
%G ru
%F VTPMK_2022_4_a4
M. S. Tikhov. Negative $\lambda$-binomial regression in dose-effect relationship. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 53-75. http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a4/

[1] Razzaghi M., Statistical Models in Toxicology, Chapman and Hall/CRC, New York, 2020, 288 pp.

[2] Krishtopenko S. V., Tikhov M. S., Popova E. B., Dose-Effect, Medicina Publ., Moscow, 2008, 228 pp. (in Russian)

[3] Varaksin A. N., Kazmer Yu. I., Katsnelson B. A., Panov V. G., Privalov L. I., “Application of binary theory to the assessment of the type of combined effect of atmospheric pollutants on the respiratory health of children”, Medical Informatics, 2011, no. 3, 36–44 (in Russian)

[4] Mikhajlyuk A. N., Solod R. A., “Clarification of the size of the onset of puberty in the hare Liza haematocheilus using extended capabilities of the probit method”, Aquatic bioresources and habitat, 2:1 (2019), 47–52 (in Russian) | DOI

[5] Tikhov M. S., “Statistical Estimation on the Basis of Interval-Censored Data”, Interuniversity Transactions on Statistical Method of Estimation and Testing Hypotheses, Perm University, Perm, 2000, 49–70 (in Russian)

[6] Tikhov M. S., “Statistical estimation based on interval censored data”, Parametric and Semiparametric Models with Applications to Reliability, Survival Analysis, and Quality of Life, Statistics for Industry and Technology, eds. N. Balakrishnan, M.S. Nikulin, M. Mesbah, N. Limnios, Birkhauser, Boston, MA, 2004, 211–218 | DOI | MR

[7] Härdle W., Applied Nonparametric Regression, Cambridge University Press, New York, 1990, 333 pp. | MR | Zbl

[8] Tikhov M. S., Krishtopenko D. S., “On the choice of smoothing parameter for unbiased estimates in dose-effect dependence with fixed experiment plan”, Statistical methods of evaluation and hypothesis testing: inter-university collection of scientific works, Perm University, Perm, 2010, 85–95 (in Russian)

[9] Tikhov M. S., Krishtopenko D. S., “Estimation of distribution under dose-effect dependence with fixed experiment plan”, Statistical methods of evaluation and hypothesis testing: inter-university collection of scientific works, Perm University, Perm, 2006, 66–77 (in Russian)

[10] Okumura H., Naito K., “Weighted kernel estimators in nonparametric binomial regression”, Journal of Nonparametric Statistics, 16:2 (2004), 39–62 | DOI | MR | Zbl

[11] Tikhov M. S., “Negative binomial regression in dose-effect relationship”, The 5th International Conference on Stochastic Methods, ICSM-5, Peoples Friendship University of Russia, 2020, 205–208 | MR

[12] Abramowitz M., Stegun I., Handbook of Mathematical Functions, Dover Publications, New York, 1965, 1046 pp. | MR

[13] Kendall M., Stuart A., The Advanced Theory of Statistics, Charles Griffin, London, 1945, 457 pp. | MR

[14] Johnson N., Kotz S., Kemp A., Univariate Discrete Distributions, John Wiley and Sons, New York, 2005, 672 pp. | MR | Zbl

[15] Stein Ch., Approximation Computation of Expectations, v. 7, Institute of Mathematical Statistics, Hayward, 1986, 180 pp. | MR

[16] Formanov Sh. K., “On the Stein-Tikhomirov method and its applications in non-classical limit theorems”, Discrete mathematics, 19:1 (2007), 27–39 (in Russian) | DOI | MR | Zbl

[17] Stein C., “A bound for the error in the normal approximation to the distribution of a sum ofdependent random variables”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1972, 586–602 | MR

[18] Chen L., Goldstein L., Shao Q. M., Normal Approximation by Stein’s Method, Springer, New York, 2011, 405 pp. | MR | Zbl

[19] Natanson I. P., Theory of Functions of a Real Variable, Dover Publications, New York, 2016, 544 pp. | MR | MR

[20] Niederreiter H., Random Number Generation and Quasi-Monte Carlo-Method, SIAM Philadelphia, Pennsylvania, 1992, 241 pp. | MR

[21] Tikhov M. S., “Neparametricheskoe otsenivanie effektivnykh doz po dannym binarnykh otklikov”, Ufa Mathematical Journal, 5:2 (2013), 94–108 (in Russian) | MR