On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators
    
    
  
  
  
      
      
      
        
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 24-38
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a system of two weakly coupled completely identical van der Pol oscillators in the case of diffusion coupling.
the question of the existence and stability of periodic solutions of the system under consideration. It is shown that it can have periodic solutions of three types, which generate Andronov-Hopf cycles, antiphase, and the third type of synchronization cycles: asymmetric cycles.
The analysis of the problem used the Poincare-Dulac method of normal forms, as well as the method of integral manifolds.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Van der Pol oscillator, synchronization of self-oscillations, normal form, stability, asymptotics of periodic solutions.
Mots-clés : cycles
                    
                  
                
                
                Mots-clés : cycles
@article{VTPMK_2022_4_a2,
     author = {O. V. Baeva and D. A. Kulikov},
     title = {On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled {Van} der {Pol} oscillators},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {24--38},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/}
}
                      
                      
                    TY - JOUR AU - O. V. Baeva AU - D. A. Kulikov TI - On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 24 EP - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/ LA - ru ID - VTPMK_2022_4_a2 ER -
%0 Journal Article %A O. V. Baeva %A D. A. Kulikov %T On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 24-38 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/ %G ru %F VTPMK_2022_4_a2
O. V. Baeva; D. A. Kulikov. On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 24-38. http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/
