On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 24-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a system of two weakly coupled completely identical van der Pol oscillators in the case of diffusion coupling. the question of the existence and stability of periodic solutions of the system under consideration. It is shown that it can have periodic solutions of three types, which generate Andronov-Hopf cycles, antiphase, and the third type of synchronization cycles: asymmetric cycles. The analysis of the problem used the Poincare-Dulac method of normal forms, as well as the method of integral manifolds.
Keywords: Van der Pol oscillator, synchronization of self-oscillations, normal form, stability, asymptotics of periodic solutions.
Mots-clés : cycles
@article{VTPMK_2022_4_a2,
     author = {O. V. Baeva and D. A. Kulikov},
     title = {On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled {Van} der {Pol} oscillators},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {24--38},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/}
}
TY  - JOUR
AU  - O. V. Baeva
AU  - D. A. Kulikov
TI  - On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 24
EP  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/
LA  - ru
ID  - VTPMK_2022_4_a2
ER  - 
%0 Journal Article
%A O. V. Baeva
%A D. A. Kulikov
%T On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 24-38
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/
%G ru
%F VTPMK_2022_4_a2
O. V. Baeva; D. A. Kulikov. On the question of the periodic solutions of a system of differential equations describing the oscillations of two loosely coupled Van der Pol oscillators. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 24-38. http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a2/

[1] Malkin I. G., Some problems of the theory of nonlinear oscillations, GITTL, Moscow, 1956 (in Russian)

[2] Pikovskij A., Rozenblyum M., Kurtts Yu., Synchronization: A fundamental nonlinear phenomenon, Tekhnosfera, Moscow, 2003, 496 pp. (in Russian)

[3] Aronson D. G., Ermentrout G. B., Kopell N., “Amplitude responce of coupled oscillators”, Physica D: Nonlinear Phenomena, 41:5 (1990), 403–449 | DOI | MR | Zbl

[4] Poliashenko M., McKay S. R., Smith C. W., “Hysteresis of syncronous-asynchronous regimes in a system of two coupled oscillators”, Physical Review A, 43:10 (1991), 5638–5641 | DOI

[5] Kuznetsov A. P., Paksyutov V. I., “On the dynamics of two Van der Pol – Duffing oscillators with dissipative coupling”, Izvestiya VUZ. Applied Nonlinear Dynamics, 11:6 (2003), 48–64 (in Russian) | Zbl

[6] Kulikov D. A., “Self-similar cycles and their local bifurcations in the problem of two weakly coupled oscillators”, Applied Mathematics and Mechanics, 74:4 (2010), 543–559 (in Russian) | Zbl

[7] Kulikov D. A., “Periodic solutions of the difference approximation of the Kuramoto-Tsuzuki equation”, Differential equations, 43:7 (2007), 992–994 (in Russian) | MR | Zbl

[8] Kulikov D. A., “Self-similar periodic solutions and bifurcations from them in the problem of the interaction of two weakly coupled oscillators”, Izvestiya VUZ. Applied Nonlinear Dynamics, 14:5 (2006), 120–132 (in Russian) | Zbl

[9] Arnold V. I., Additional chapters of the theory of ordinary differential equations, Nauka Publ., Moscow, 1978, 304 pp. (in Russian)

[10] Bibikov Yu. N., Course of ordinary differential equations, Nauka Publ., Moscow, 1991, 303 pp. (in Russian) | MR

[11] Gukenkhejmer Dzh., Kholms F., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Institute of Computer Research, Moscow, Izhevsk, 2003, 560 pp. (in Russian)

[12] Demidovich B. P., Lectures on the mathematical theory of stability, Nauka Publ., Moscow, 1967, 472 pp. (in Russian) | MR

[13] Huygens C., The pendulum clock, or, geometrical demonstrations concerning the motion of pendula as applied to clocks, Iowa State University, Iowa, 1986 | MR

[14] Radin M. A., Kulikov A. N., Kulikov D. A., “Synchronization of Fluctuations in the Interaction of Economies within the Framework of the Keynes’s Business Cycle Model”, Nonlinear Dynamics, Psychology, and Life Sciences, 25:1 (2021), 93–111