On Jonsson varieties and quasivarieties
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 5-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Earlier the notion of a Jonsson varieties and quasivarieties was introduced. For these classes of algebraic structures various assertions were proven by some researchers. We show that Jonsson varieties and quasivarieties are exactly classes of sets or pointed sets, it depends on signature. Thus, the results from the works mentioned above are trivial.
Keywords: variety, quasivariety, Jonsson theory.
@article{VTPMK_2022_4_a0,
     author = {S. M. Dudakov},
     title = {On {Jonsson} varieties and quasivarieties},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {5--10},
     year = {2022},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a0/}
}
TY  - JOUR
AU  - S. M. Dudakov
TI  - On Jonsson varieties and quasivarieties
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 5
EP  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a0/
LA  - ru
ID  - VTPMK_2022_4_a0
ER  - 
%0 Journal Article
%A S. M. Dudakov
%T On Jonsson varieties and quasivarieties
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 5-10
%N 4
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a0/
%G ru
%F VTPMK_2022_4_a0
S. M. Dudakov. On Jonsson varieties and quasivarieties. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 4 (2022), pp. 5-10. http://geodesic.mathdoc.fr/item/VTPMK_2022_4_a0/

[1] Maltsev A. I., Algebraic systems, Springer-Verlag, New York, Heidelberg, and Berlin, 1973 | MR | MR | Zbl

[2] Jonsson B., “Homogeneous universal relational systems”, Mathematica Scandinavica, 1960, no. 8, 137–142 | DOI | MR | Zbl

[3] Yeshkeyev A. R., “On Jonsson varieties and quasivarieties”, Bulletin of the Karaganda university. Mathematics series, 104:4 (2021), 151–157 | DOI

[4] Hodges W., Model Theory, Cambridge University Press, Cambridge, 1993, 786 pp. | MR | Zbl