On decidability of finite subsets’ theory for discrete linear order
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let us consider a discrete linear ordered set. On finite subsets of such set we introduce a new binary relation. This relation says that all items of a first set is less than all items of a second one. We show that the theory of such constructed structure admits quantifier elimination. For this purpose, we expand the language with four definable functions. As a corollary we get the theory of finite subsets of a discrete linear order to be decidable.
Keywords: theory, finite subsets, discrete linear order, decidability.
Mots-clés : quantifiers elimination
@article{VTPMK_2022_3_a6,
     author = {N. V. Avkhimovich},
     title = {On decidability of finite subsets{\textquoteright} theory for discrete linear order},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {91--104},
     year = {2022},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/}
}
TY  - JOUR
AU  - N. V. Avkhimovich
TI  - On decidability of finite subsets’ theory for discrete linear order
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 91
EP  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/
LA  - ru
ID  - VTPMK_2022_3_a6
ER  - 
%0 Journal Article
%A N. V. Avkhimovich
%T On decidability of finite subsets’ theory for discrete linear order
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 91-104
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/
%G ru
%F VTPMK_2022_3_a6
N. V. Avkhimovich. On decidability of finite subsets’ theory for discrete linear order. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/

[1] Avkhimovich N. V., “On the solvability of finite subset theory for dense linear order”, Actual problems of applied mathematics, computer science and Mechanics: proceedings of the International Scientific Conference, Voronezh, 2022, 1521–1525 (in Russian)

[2] Dudakov S. M., “On Undecidability of Finite Subsets Theory for Torsion Abelian Groups”, Mathematics, 10:3 (2022), 533

[3] Dudakov S. M., “On undecidability of concatenation theory for one-symbol languages”, Lobachevskii Journal of Mathematics, 40:2 (2020), 168–175

[4] Dudakov S. M., “On Undecidability of Subset Theory for Some Monoids”, Journal of Physics: Conference Series, 1902:1 (2021), 012060 | DOI

[5] Rabin M. O., “Decidability of second-order theories and automata on infinite trees”, Bulletin of the American Mathematical Society, 74 (1968), 1025–1029

[6] Dudakov S. M., Fundamentals of model theory, Tver State University, Tver, 2013, 480 pp. (in Russian)