On decidability of finite subsets’ theory for discrete linear order
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us consider a discrete linear ordered set. On finite subsets of such set we introduce a new binary relation. This relation says that all items of a first set is less than all items of a second one. We show that the theory of such constructed structure admits quantifier elimination. For this purpose, we expand the language with four definable functions. As a corollary we get the theory of finite subsets of a discrete linear order to be decidable.
Keywords: theory, finite subsets, discrete linear order, decidability.
Mots-clés : quantifiers elimination
@article{VTPMK_2022_3_a6,
     author = {N. V. Avkhimovich},
     title = {On decidability of finite subsets{\textquoteright} theory for discrete linear order},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {91--104},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/}
}
TY  - JOUR
AU  - N. V. Avkhimovich
TI  - On decidability of finite subsets’ theory for discrete linear order
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 91
EP  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/
LA  - ru
ID  - VTPMK_2022_3_a6
ER  - 
%0 Journal Article
%A N. V. Avkhimovich
%T On decidability of finite subsets’ theory for discrete linear order
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 91-104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/
%G ru
%F VTPMK_2022_3_a6
N. V. Avkhimovich. On decidability of finite subsets’ theory for discrete linear order. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/