On decidability of finite subsets’ theory for discrete linear order
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104
Voir la notice de l'article provenant de la source Math-Net.Ru
Let us consider a discrete linear ordered set. On finite subsets of such set we introduce a new binary relation. This relation says that all items of a first set is less than all items of a second one. We show that the theory of such constructed structure admits
quantifier elimination. For this purpose, we expand the language with four definable functions. As a corollary we get the theory of finite subsets of a discrete linear order to be decidable.
Keywords:
theory, finite subsets, discrete linear order, decidability.
Mots-clés : quantifiers elimination
Mots-clés : quantifiers elimination
@article{VTPMK_2022_3_a6,
author = {N. V. Avkhimovich},
title = {On decidability of finite subsets{\textquoteright} theory for discrete linear order},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {91--104},
publisher = {mathdoc},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/}
}
TY - JOUR AU - N. V. Avkhimovich TI - On decidability of finite subsets’ theory for discrete linear order JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 91 EP - 104 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/ LA - ru ID - VTPMK_2022_3_a6 ER -
%0 Journal Article %A N. V. Avkhimovich %T On decidability of finite subsets’ theory for discrete linear order %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 91-104 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/ %G ru %F VTPMK_2022_3_a6
N. V. Avkhimovich. On decidability of finite subsets’ theory for discrete linear order. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 91-104. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a6/