Projection constants of the space $l_\infty^{3m}$
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 76-90
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper considers minimal projections of the space $l_\infty^{3m}$ on some subspace of codimension $m$.
Relative projection constants are found for them, and in the case of a minimal projection with a unit norm, the maximum value of the strong uniqueness constant is found. The projection constants found can be used in
computational mathematics, in particular, to assess the convergence of projection methods for solving operator equations.
Keywords:
space, subspace, projection operator, the constant of strong uniqueness.
Mots-clés : relative projection constant
Mots-clés : relative projection constant
@article{VTPMK_2022_3_a5,
author = {O. M. Martynov},
title = {Projection constants of the space $l_\infty^{3m}$},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {76--90},
publisher = {mathdoc},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a5/}
}
TY - JOUR
AU - O. M. Martynov
TI - Projection constants of the space $l_\infty^{3m}$
JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY - 2022
SP - 76
EP - 90
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a5/
LA - ru
ID - VTPMK_2022_3_a5
ER -
O. M. Martynov. Projection constants of the space $l_\infty^{3m}$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 76-90. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a5/