Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamic Euler equations for a rotating rigid body with a fixed point in projection on fixed (inertial) axes are derived. A complete system of analytical integrals in the form of a vector integral for the dynamic Euler equation with the zero right side, as well as for the kinematic Poisson and Volterra-Zhukovsky equations is presented. All these integrals do not contain elliptic quadratures.
Mots-clés : Euler equations, Poisson equations, Volterra-Zhukovsky equations, elliptic quadrature.
Keywords: vector integrals, solid dynamics
@article{VTPMK_2022_3_a4,
     author = {V. N. Onikiychuk and I. V. Onikiychuk},
     title = {Vector integrals of the {Euler,} {Poisson} and {Volterra-Zhukovsky} equations},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {62--75},
     year = {2022},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/}
}
TY  - JOUR
AU  - V. N. Onikiychuk
AU  - I. V. Onikiychuk
TI  - Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 62
EP  - 75
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/
LA  - ru
ID  - VTPMK_2022_3_a4
ER  - 
%0 Journal Article
%A V. N. Onikiychuk
%A I. V. Onikiychuk
%T Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 62-75
%N 3
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/
%G ru
%F VTPMK_2022_3_a4
V. N. Onikiychuk; I. V. Onikiychuk. Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/

[1] Appel P., Theoretical mechanics, Fizmatgiz, Nauka, Moscow, 1960 (in Russian)

[2] Kozlov V. V., “Integrability and nonintegrability in Hamiltonian mechanics”, Russian Mathematical Surveys, 38:1 (229) (1983), 3–67 (in Russian)

[3] Borisov A. V., Mamaev I. S., Solid body dynamics, Regular and Chaotic Dynamics Publ., Izhevsk, 2001, 384 pp. (in Russian)

[4] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Factorial Publishing House, Moscow, 1995 (in Russian)

[5] Markeev A. P., Teoreticheskaya mekhanika, Regular and Chaotic Dynamics Publ., Izhevsk, 1999, 572 pp. (in Russian)

[6] Uitteker E., Analytical dynamics, Publishing House Udmurt University, 1999, 588 pp. (in Russian)

[7] Lamb G., Theoretical mechanics, United Scientific and Technical Publishing House of the NKTP of the USSR, Moscow, 1936 (in Russian)

[8] Golubev Yu. F., Fundamentals of theoretical mechanics, MSU Publishing House, Moscow, 2000, 719 pp. (in Russian)

[9] Petkevich V. V., Theoretical mechanics, Nauka Publ., Moscow, 1981 (in Russian)

[10] Khaar D., Fundamentals of Hamiltonian mechanics, Nauka Publ., Moscow, 1974 (in Russian)

[11] Lagranzh Zh. L., Analytical mechanics, Gostekhizdat Publishing House, Moscow, 1950 (in Russian)

[12] Kozlov V. V., General theory of vortices, Publishing House Udmurt University, Izhevsk, 1998, 238 pp. (in Russian)

[13] Oden M., Spinning tops: a course of integrable systems, Regular and Chaotic Dynamics Publ., 1999, 215 pp. (in Russian)

[14] Amelkin N. I., Solid body dynamics, MIPT, Moscow, 2010 (in Russian)

[15] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Publishing House Udmurt University, Izhevsk, 1995, 432 pp. (in Russian)

[16] Borisov A. V., Mamaev I. S., Poisson structures and Lie algebras in Hamiltonian mechanics, Publishing House Udmurt University, Izhevsk, 1999 (in Russian)

[17] Wittenburg J., Dynamics of systems of rigid bodies, Stuttgart Publ., Stuttgart, 1977

[18] Klein F., Mathematical Theory of the Top, New York, 1897

[19] Onikijchuk V. N., The Great Mystery of Leonhard Euler, Professional Publishing House, SPb., 2007, 520 pp. (in Russian)

[20] Goldstejn G., Classical mechanics, Nauka Publ., Moscow, 1975, 415 pp. (in Russian)

[21] Zhuravlev V. F., Fundamentals of theoretical mechanics, Fizmatlit Publ., Moscow, 2001, 320 pp. (in Russian)