Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75
Voir la notice de l'article provenant de la source Math-Net.Ru
The dynamic Euler equations for a rotating rigid body with a fixed point in projection on fixed (inertial) axes are derived. A complete system of analytical integrals in the form of a vector integral for the dynamic Euler equation with the zero right side, as well as for the kinematic Poisson and Volterra-Zhukovsky equations is presented. All these integrals do not contain elliptic quadratures.
Mots-clés :
Euler equations, Poisson equations, Volterra-Zhukovsky equations, elliptic quadrature.
Keywords: vector integrals, solid dynamics
Keywords: vector integrals, solid dynamics
@article{VTPMK_2022_3_a4,
author = {V. N. Onikiychuk and I. V. Onikiychuk},
title = {Vector integrals of the {Euler,} {Poisson} and {Volterra-Zhukovsky} equations},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {62--75},
publisher = {mathdoc},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/}
}
TY - JOUR AU - V. N. Onikiychuk AU - I. V. Onikiychuk TI - Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 62 EP - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/ LA - ru ID - VTPMK_2022_3_a4 ER -
%0 Journal Article %A V. N. Onikiychuk %A I. V. Onikiychuk %T Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 62-75 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/ %G ru %F VTPMK_2022_3_a4
V. N. Onikiychuk; I. V. Onikiychuk. Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/