Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamic Euler equations for a rotating rigid body with a fixed point in projection on fixed (inertial) axes are derived. A complete system of analytical integrals in the form of a vector integral for the dynamic Euler equation with the zero right side, as well as for the kinematic Poisson and Volterra-Zhukovsky equations is presented. All these integrals do not contain elliptic quadratures.
Mots-clés : Euler equations, Poisson equations, Volterra-Zhukovsky equations, elliptic quadrature.
Keywords: vector integrals, solid dynamics
@article{VTPMK_2022_3_a4,
     author = {V. N. Onikiychuk and I. V. Onikiychuk},
     title = {Vector integrals of the {Euler,} {Poisson} and {Volterra-Zhukovsky} equations},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {62--75},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/}
}
TY  - JOUR
AU  - V. N. Onikiychuk
AU  - I. V. Onikiychuk
TI  - Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 62
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/
LA  - ru
ID  - VTPMK_2022_3_a4
ER  - 
%0 Journal Article
%A V. N. Onikiychuk
%A I. V. Onikiychuk
%T Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 62-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/
%G ru
%F VTPMK_2022_3_a4
V. N. Onikiychuk; I. V. Onikiychuk. Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 62-75. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a4/