@article{VTPMK_2022_3_a2,
author = {Z. Z. Mingaliyev and S. V. Novikova and G. V. Moiseyev},
title = {Various length step calculation method for piecewise linear approximation problem of empirical nonlinear function with a specified accuracy},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {35--48},
year = {2022},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a2/}
}
TY - JOUR AU - Z. Z. Mingaliyev AU - S. V. Novikova AU - G. V. Moiseyev TI - Various length step calculation method for piecewise linear approximation problem of empirical nonlinear function with a specified accuracy JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 35 EP - 48 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a2/ LA - ru ID - VTPMK_2022_3_a2 ER -
%0 Journal Article %A Z. Z. Mingaliyev %A S. V. Novikova %A G. V. Moiseyev %T Various length step calculation method for piecewise linear approximation problem of empirical nonlinear function with a specified accuracy %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 35-48 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a2/ %G ru %F VTPMK_2022_3_a2
Z. Z. Mingaliyev; S. V. Novikova; G. V. Moiseyev. Various length step calculation method for piecewise linear approximation problem of empirical nonlinear function with a specified accuracy. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 35-48. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a2/
[1] Loran P. Zh., Approximation and optimization, Mir Publ., Moscow, 1975, 496 pp. (in Russian)
[2] Sohn J., Robertazzi T. G., Luryi S., “Optimizing computing costs using divisible load analysis”, IEEE Transactions on Parallel and Distributed Systems, 9:3 (1998), 225–234 | DOI
[3] Bauman E. V., Goldovskaya M. D., Dorofeyuk Yu. A., “Piecewise linear approximation methods and their use in control problems”, Tauride Bulletin of Computer Science and Mathematics, 2008, no. 1 (12), 73–79 (in Russian)
[4] Tomek I., “Two Algorithms for Piecewise-Linear Continuous Approximation of Functions of One Variable”, IEEE Transactions on Computers, C-23:4 (1974), 445–448 | DOI
[5] Budylina E. A., Garkina I. A., Sukhov Ya. I., “Piecewise linear approximation algorithm with maximum interval”, Young scientist, 2014, no. 3 (62), 269–271 (in Russian)
[6] Paasonen V. I., “A third-order approximation scheme on an uneven grid for the Navier-Stokes equations”, Computing technologies, 5:5 (2000), 78–85 (in Russian)
[7] Novikova S. V., Mingaliev Z. Z., “Neural network prediction of glycemia in patients with diabetes mellitus based on mixed time series with the prospect of use as part of an intelligent insulin pump”, Modern information technologies and IT education, 17:1 (2021), 90–98 (in Russian) | DOI
[8] Types of Insulin https://www.cdc.gov/diabetes/ basics/type-1-types-of-insulin.html
[9] Toffanin Ch., Zisser H., Doyle F. J., Dassau E., “Dynamic Insulin on Board: Incorporation of Circadian Insulin Sensitivity Variation”, Journal of Diabetes Science and Technology, 7:4 (2013), 928–940 | DOI
[10] Vettoretti M., Cappon G., Facchinetti A., Sparacino G., “Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors”, Sensors, 20:14 (2020), 3870 | DOI
[11] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction To Algorithms, The MIT Press, Cambridge, Massachusetts, 2009, 1313 pp.