@article{VTPMK_2022_3_a1,
author = {Yu. A. Malyshkin},
title = {Number of maximal rooted trees in uniform attachment model via stochastic approximation},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {27--34},
year = {2022},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a1/}
}
TY - JOUR AU - Yu. A. Malyshkin TI - Number of maximal rooted trees in uniform attachment model via stochastic approximation JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 27 EP - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a1/ LA - ru ID - VTPMK_2022_3_a1 ER -
%0 Journal Article %A Yu. A. Malyshkin %T Number of maximal rooted trees in uniform attachment model via stochastic approximation %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 27-34 %N 3 %U http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a1/ %G ru %F VTPMK_2022_3_a1
Yu. A. Malyshkin. Number of maximal rooted trees in uniform attachment model via stochastic approximation. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 3 (2022), pp. 27-34. http://geodesic.mathdoc.fr/item/VTPMK_2022_3_a1/
[1] Chen H. F., Stochastic Approximation and Its Applications, v. 64, Nonconvex Optimization and its Applications, Springer, New York, 2002, 360 pp. | DOI
[2] Frieze A., Karonski M., Introduction to random graphs, Cambridge University Press, 2016, 478 pp.
[3] Garavaglia A., Preferential attachment models for dynamic networks, Technische Universiteit Eindhoven, 2019, 305 pp.
[4] Malyshkin Y. A., Zhukovskii M. E., “MSO 0-1 law for recursive random trees”, Statistics and Probability Letters, 173 (2021), 109061
[5] Malyshkin Y. A., Zhukovskii M. E., “$\gamma$-variable first-order logic of uniform attachment random graphs”, Discrete Mathematics, 345:5 (2022), 112802
[6] Pemantle R., “A survey of random processes with reinforcement”, Probability Surveys, 4 (2007), 1–79