@article{VTPMK_2022_2_a5,
author = {S. V. Novikova and P. A. Chernyshevsky},
title = {Inverse optimization problem solving for {ANN} data mining models based on the {epsilon-Lipschitz} approach},
journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
pages = {74--83},
year = {2022},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/}
}
TY - JOUR AU - S. V. Novikova AU - P. A. Chernyshevsky TI - Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach JO - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika PY - 2022 SP - 74 EP - 83 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/ LA - ru ID - VTPMK_2022_2_a5 ER -
%0 Journal Article %A S. V. Novikova %A P. A. Chernyshevsky %T Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach %J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika %D 2022 %P 74-83 %N 2 %U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/ %G ru %F VTPMK_2022_2_a5
S. V. Novikova; P. A. Chernyshevsky. Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 74-83. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/
[1] Dmitriev V. G., “Environmental risk assessment. Analytical review of publications”, The Arctic and the North, 2014, no. 14, 126–147 (in Russian)
[2] Tunakova Yu. A., Novikova S. V., Shagidullin A. R., Valiev V. S., “Approaches for ensuring the technosphere safety of the urban environment using neural network modeling methods”, XXI century. Technosphere safety, 5:1(17) (2020), 21–28 (in Russian)
[3] Kremleva E. Sh., Novikova S. V., Shagidullin A. R., “Integrated assessment of the state of the environment based on an automatic neural network recognizer”, Proceedings of the International Scientific Conference (School of Young Scientists) Chemistry and Engineering Ecology - XIX, 2019, 224–227 (in Russian)
[4] Tarantola A., Inverse Problem Theory Methods for Data Fitting and Model Parameter Estimation, Elseveir, Amsterdam, 1987, 644 pp. | MR | Zbl
[5] Sergeev Ya. D., Kvasov D. E., Diagonal methods of global optimization, Fizmatlit Publ., Moscow, 2008, 352 pp. (in Russian)
[6] Piyavskij S. A., “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67 | DOI | MR
[7] Yevtushenko Yu. G., “Numerical methods for finding global extrema (Case of a non-uniform mesh)”, USSR Computational Mathematics and Mathematical Physics, 11:6 (1971), 38–54 | DOI | MR | Zbl
[8] Strongin R. G., Numerical methods in multiextremal problems, Nauka Publ., Moscow, 1978, 240 pp. (in Russian) | MR
[9] Vanderbei R. J., “Extension of Piyavskii's Algorithm to Continuous Global Optimization”, Journal of Global Optimization, 14 (1999), 205–216 | DOI | MR | Zbl
[10] Zabotin V. I., Chernyshevskij P. A., “Two modifications of extension of piyavskii’s global optimization algorithm to a function continuous on a compact interval and its convergence”, Herald of Tver State University. Series: Applied Mathematics, 2021, no. 3, 70–85 (in Russian) | DOI
[11] Arutyunova N. K., “Yevtushenko's method for finding $\varepsilon $-Lipschitzian function global minimum and its application”, Herald of the KSTU-KAI Named After A.N. Tupolev, 2013, no. 2, 154–157 (in Russian)
[12] Zabotin V. I., Chernyshevskij P. A., “Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval”, Computer Research and Modeling, 11:6 (2019), 1111–1119 | DOI
[13] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Global optimization of multivariable functions satisfying the Vanderbei condition”, Journal of Applied Mathematics and Computing, 68:2 (2022), 1135–1161 | DOI | MR | Zbl
[14] Rostovtsev V. S., Artificial neural networks, Lan, 2019, 216 pp. (in Russian)