Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 74-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Data mining techniques in particular cases cannot give us answers to all questions appeared in terms of the concerned simulation model. In this paper we show how some of such questions can be formulated as global optimization problem with continuous ANN function. Difficulties with proving an ANN based function Lipschitz continuity and Lipschitz constant estimating in some cases makes searching for the global minimum problematic since continuity does not guarantee us Lipschitz inequality holding. As a result, we are not able to apply conventional techniques. In this paper we propose the use of modified methods based on the $\varepsilon $- Lipschitz property for finding the global minimum because it requires only objective function continuity. As the example we analyze an ANN based prediction model for calculating metal level in human depending on metal level in drinking water, obtain associated optimization problem and show numerical results based on extended Strongin algorithm.
Keywords: ANN modeling, data mining, continuous function, global optimization, extended Strongin algorithm.
@article{VTPMK_2022_2_a5,
     author = {S. V. Novikova and P. A. Chernyshevsky},
     title = {Inverse optimization problem solving for {ANN} data mining models based on the {epsilon-Lipschitz} approach},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {74--83},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/}
}
TY  - JOUR
AU  - S. V. Novikova
AU  - P. A. Chernyshevsky
TI  - Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 74
EP  - 83
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/
LA  - ru
ID  - VTPMK_2022_2_a5
ER  - 
%0 Journal Article
%A S. V. Novikova
%A P. A. Chernyshevsky
%T Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 74-83
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/
%G ru
%F VTPMK_2022_2_a5
S. V. Novikova; P. A. Chernyshevsky. Inverse optimization problem solving for ANN data mining models based on the epsilon-Lipschitz approach. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 74-83. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a5/

[1] Dmitriev V. G., “Environmental risk assessment. Analytical review of publications”, The Arctic and the North, 2014, no. 14, 126–147 (in Russian)

[2] Tunakova Yu. A., Novikova S. V., Shagidullin A. R., Valiev V. S., “Approaches for ensuring the technosphere safety of the urban environment using neural network modeling methods”, XXI century. Technosphere safety, 5:1(17) (2020), 21–28 (in Russian)

[3] Kremleva E. Sh., Novikova S. V., Shagidullin A. R., “Integrated assessment of the state of the environment based on an automatic neural network recognizer”, Proceedings of the International Scientific Conference (School of Young Scientists) Chemistry and Engineering Ecology - XIX, 2019, 224–227 (in Russian)

[4] Tarantola A., Inverse Problem Theory Methods for Data Fitting and Model Parameter Estimation, Elseveir, Amsterdam, 1987, 644 pp. | MR | Zbl

[5] Sergeev Ya. D., Kvasov D. E., Diagonal methods of global optimization, Fizmatlit Publ., Moscow, 2008, 352 pp. (in Russian)

[6] Piyavskij S. A., “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67 | DOI | MR

[7] Yevtushenko Yu. G., “Numerical methods for finding global extrema (Case of a non-uniform mesh)”, USSR Computational Mathematics and Mathematical Physics, 11:6 (1971), 38–54 | DOI | MR | Zbl

[8] Strongin R. G., Numerical methods in multiextremal problems, Nauka Publ., Moscow, 1978, 240 pp. (in Russian) | MR

[9] Vanderbei R. J., “Extension of Piyavskii's Algorithm to Continuous Global Optimization”, Journal of Global Optimization, 14 (1999), 205–216 | DOI | MR | Zbl

[10] Zabotin V. I., Chernyshevskij P. A., “Two modifications of extension of piyavskii’s global optimization algorithm to a function continuous on a compact interval and its convergence”, Herald of Tver State University. Series: Applied Mathematics, 2021, no. 3, 70–85 (in Russian) | DOI

[11] Arutyunova N. K., “Yevtushenko's method for finding $\varepsilon $-Lipschitzian function global minimum and its application”, Herald of the KSTU-KAI Named After A.N. Tupolev, 2013, no. 2, 154–157 (in Russian)

[12] Zabotin V. I., Chernyshevskij P. A., “Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval”, Computer Research and Modeling, 11:6 (2019), 1111–1119 | DOI

[13] Arutyunova N. K., Dulliev A. M., Zabotin V. I., “Global optimization of multivariable functions satisfying the Vanderbei condition”, Journal of Applied Mathematics and Computing, 68:2 (2022), 1135–1161 | DOI | MR | Zbl

[14] Rostovtsev V. S., Artificial neural networks, Lan, 2019, 216 pp. (in Russian)