On Abel summation for Laplace transform of the homogeneous functions in $R^n$
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 27-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses homogeneous functions of the form $\theta \left(\tau \right)\left|t\right|^{\alpha }$, which are determined by the order of homogeneity $\alpha >-n$, as well as by the function $\theta \left(\tau \right)$ on the unit sphere $S^{n-1}=\left\{t{\in}R^n,\left|t\right|=1\right\}$. When calculating the Laplace transform of these functions supported in a sharp cone, it is necessary to obtain an explicit representation. This is achieved by summing integrals according to Abel, as well as by applying Fourier analysis on the sphere, which will allow to bring calculations to transformations of hypergeometric functions necessary to calculate the limits as $\varepsilon \rightarrow 0$. The article presents formulas for the Laplace transform of homogeneous functions for various function spaces on the unit sphere.
Keywords: Abel summation, homogeneous functions, spherical harmonics, Fourier-Laplace series.
Mots-clés : multidimensional Laplace transform
@article{VTPMK_2022_2_a2,
     author = {S. V. Arhipov},
     title = {On {Abel} summation for {Laplace} transform of the homogeneous functions in $R^n$},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {27--44},
     year = {2022},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a2/}
}
TY  - JOUR
AU  - S. V. Arhipov
TI  - On Abel summation for Laplace transform of the homogeneous functions in $R^n$
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 27
EP  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a2/
LA  - ru
ID  - VTPMK_2022_2_a2
ER  - 
%0 Journal Article
%A S. V. Arhipov
%T On Abel summation for Laplace transform of the homogeneous functions in $R^n$
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 27-44
%N 2
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a2/
%G ru
%F VTPMK_2022_2_a2
S. V. Arhipov. On Abel summation for Laplace transform of the homogeneous functions in $R^n$. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 27-44. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a2/

[1] Arkhipov S. V., “The Abel summation of the inverse Fourier transform of the homogeneous functions in $R^n$”, Herald of Tver State University. Series: Applied Mathematics, 2019, no. 4, 98–107 (in Russian) | DOI

[2] Vladimirov V. S., Drozzinov Yu. N., Zavialov B. I., Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Dordrecht, 1988, 292 pp. | MR | MR | Zbl

[3] Gradshtejn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Fizmatlit Publ., Moscow, 1963, 1100 pp. (in Russian) | MR

[4] Kratzer A., Franz W., Transcendent functions, Iz-vo inostrannoj literatury, M., 1963, 467 pp. (in Russian)

[5] Luke Yu., Mathematical functions and their approximations, Mir Publ., Moscow, 1980, 608 pp. (in Russian)

[6] Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, Fizmatlit Publ., Moscow, 1962, 254 pp. (in Russian) | MR

[7] Muller C., Spherical Harmonics, v. 17, Lecture Notes in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1966, 45 pp. | DOI | MR | Zbl

[8] Plamenevskij B. A., Algebras of pseudodifferential operators, Nauka Publ., Moscow, 1986, 256 pp. (in Russian) | MR

[9] Samko S. G., Hypersingular Integrals and Their Applications, Rostov University Press, Rostov, 1984, 208 pp. (in Russian) | MR

[10] Samko S. G., “Obobshchyonnye rissovy potentsialy i gipersingulyarnye integraly s odnorodnymi kharakteristikami, ikh simvoly i obrashchenie”, Proceedings of the Steklov Institute of Mathematics, 156 (1980), 152–222 (in Russian)

[11] Samko S. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. (in Russian)

[12] Stejn I., Vejs G., Introduction to Fourier Analysis on Euclidean Spaces, Mir Publ., Moscow, 1974, 333 pp. (in Russian)

[13] Rubin B., Introduction to Radon Transform: with elements of fractional calculations and harmonic analysis, Cambridge University Press, 2015, 576 pp. | MR