Modeling of the partial fixed point operator
Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 14-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider various semantics of partial fixed point (PFP) operator for infinite structures. We consider infinite structures those contains partial order with chains of arbitrary length. We establish that considerable semantics can be modeled by inflationary fixed point operator.
Keywords: partial fixed point, inflationary fixed point, infinite structure, semantic.
@article{VTPMK_2022_2_a1,
     author = {V. S. Sekorin},
     title = {Modeling of the partial fixed point operator},
     journal = {Vestnik Tverskogo gosudarstvennogo universiteta. Seri\^a Prikladna\^a matematika},
     pages = {14--26},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a1/}
}
TY  - JOUR
AU  - V. S. Sekorin
TI  - Modeling of the partial fixed point operator
JO  - Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
PY  - 2022
SP  - 14
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a1/
LA  - ru
ID  - VTPMK_2022_2_a1
ER  - 
%0 Journal Article
%A V. S. Sekorin
%T Modeling of the partial fixed point operator
%J Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika
%D 2022
%P 14-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a1/
%G ru
%F VTPMK_2022_2_a1
V. S. Sekorin. Modeling of the partial fixed point operator. Vestnik Tverskogo gosudarstvennogo universiteta. Seriâ Prikladnaâ matematika, no. 2 (2022), pp. 14-26. http://geodesic.mathdoc.fr/item/VTPMK_2022_2_a1/